Теплопроводность пенопласта и пенополистирола сравнение: Сравнение пенопласта и экструдированного пенополистирола — «ИзолМаркет»

Содержание

Сравнение пенопласта и экструдированного пенополистирола — «ИзолМаркет»

Экструдированный пенополистирол (Пеноплэкс, Батэплекс, Истплекс или ТехноНИКОЛЬ) и пенопласт – наиболее популярные теплоизоляционные материалы на нашем рынке стройматериалов. Эти утеплители схожи по своим техническим характеристикам и сделать выбор между ними очень тяжело. Но сейчас мы разберём вопрос: все-таки пенопласт (ППТ) или пенополистирол (ЭППС/XPS)? И каковы отличия у этих материалов? Выполним сравнение технических характеристик и посмотрим на особенности этих материалов.

Во-первых, данные материалы отличаются по технологии производственного процесса.

Пенопласт получают путём распаривания полистирола, сырье вспенивается, размер стирольного шарика увеличивается и они соединяются друг с другом.

Пенопласт, по большому счёту, это склеенные между собой шарики.

Структура пенопласта

Экструзионный пенополистирол производят совсем по-другому. Стирол загружают в экструдер, в нем гранулы нагревают до однородной жидкой массы. Потом однородную вязкую массу под давлением выдавливают из экструдера, обрезают и задают нужную форму и размеры. Экструзионный пенополистирол– однородный материал практически не имеющий пор, за счёт чего его водопоглащение практически равно нулю.

Структура экструдированного пенополистирола

Эти отличия в производственном процессе и дают такую большую разницу в технических характеристиках между ППТ и ЭППС.

А сейчас посмотрим на их отличия более детально.

1. Теплопроводность
Одна из самых главных характеристик теплоизоляции – это теплопроводность. Чем она меньше — тем лучше, соответственно и толщина слоя теплоизоляции нужна меньше.

Теплопроводность экструзионного пенополистирола составляет 0,028 Вт/мк, теплопроводность пенопласта – 0,039 Вт/мк. По этим данным понятно, что экструзия теплее пенопласта примерно на 30%. То есть используя пенополистирол, можно сэкономить на слое теплоизоляции.

2. Механическая прочность
Уже писалось выше, что ЭППС обладает однородной структурой, а ППТ – это соединение шариков пенополистирола. Эта разница в процессе производства и даёт такое отличие в прочностных показателях.

Экструдированный пенополистирол (в зависимости от выбранной марки):
Прочность на изгиб: 0,4 – 1 МПа
Прочность на сжатие: 0,15 – 1 МПа

Пенопласт (в зависимости от выбранной марки):
Прочность на изгиб: 0,07 – 0,2 Мпа
Прочность на сжатие: 0,05 – 0,25 Мпа

Пенопласт обладает плотностью от 10 до 35 кг, экструдировпнный пенополистирол: 20 – 45 кг.

Вообще, пенопласт при нагрузке крошиться и ломается. Экструзионный полистирол, в свою очередь, выдерживает серьезные нагрузки (поверхности, которые утепляют, имеют свойства деформироваться).

Фасад, утеплённый ЭППС («Пеноплэкс Комфорт»)

3. Гидрофобность
Этот показатель важен для любого строительного материала, а для теплоизоляции и подавно, поскольку при поглощении влаги теплоизоляция перестаёт работать и при высыхании не восстанавливает свои свойства. Так же стирольные утеплители при наборе и долгом прибывании во влаге подвержены гниению и последующему разрушению. Экструзия имеет структуру, в которой ячейки закрыты, как результат – водопоглащение практически нулевое.

За 24 часа при полном погружении в водную среду ЭППС впитывает не более 0,2% по массе, за 30 дней – 0,4% от своего объёма.
У обычного пенопласта показатели водопоглащения в разы хуже. Так, за 24 часа (полное погружение) – 2%, а за 30 дней – 4%.

При использовании на фундаменте, цоколе и в конструкциях с влажными условиями пенопласт применять не рекомендуется.

4. Огнеупорность
Горючесть теплоизоляции весьма важный вопрос, особенно в конструкциях где материал не будет закрыт негорючими материалами (мансарды, кровли).

У XPS и ППТ и других утеплителей, где сырьем является стирол, горючесть будет Г-4 или Г-3

5. Склонность к усадке
Основные враги теплоизоляции – это вода и усадка. Если материал деформируется в процессе эксплуатации, то между плитами появляются щели, материал теряет толщину, и это будет сказываться на эффективности теплоизоляции. Один из самых основных минусов ППТ (пенопласта) – это, как раз-таки, склонность к усадке при нагревании. После того как теплоизоляционный материал «сел», между плитами появляются щели, уменьшается толщина слоя и общая эффективность утепленной конструкции снижается.

Утепление фасада пенопластом (ППТ)

Не стоит покупать пенопласт для утепления в системе теплого пола, так как нагрев будет ухудшать тех. характеристики теплоизоляции. Если для утепления фасада Вы выбираете пенопласт, то стоит красить фасад в светлый тонн, чтобы его нагрев был меньше.

У экструдированного пенополистирола данных проблем нет – XPS практически не дает усадку при любых эксплуатационных нагрузках.

Вывод
Если учесть все вышеперечисленное, то ответ на вопрос: «Что лучше, пенопласт или экструдированный пенополистирол?» ясен и понятен. Технические и теплоизоляционные характеристики XPS в разы выше чем у пенопласта.

Ниже приведем таблицу сравнения

Параметры Пенополистирол (XPS) Пенопласт (ППТ)
Теплопроводность 0,028 Вт/мк 0,039 Вт/мк
Коэффициент паропроницаемости 0,05 мг/мчПа 0,022 мг/мчПа
Плотность 30 — 45 кг/м3 15 — 35 кг/м3
Водопоглощение при частичном погружении на 24 часа 0,2 %
2 %
Прочность на изгиб 0,4 — 1 МПа 0,07 — 0,2 МПа
Прочность на сжатие (при деформации на 10%) 0,02 — 0,7 МПа 0,05 — 0,2 МПа
Рабочая температура* от -50 до +70° C от -50 до +70° C
Возгорание материала от +450° C от +310° C

* Если температурный порог пройден, материалы начинают деформироваться.

Если Вы стоите перед выбором, что приобрести для теплоизоляции здания — ППТ или XPS — то выбор очевиден. Купить экструдированный пенополистирол от ведущих производителей и по выгодным ценам можно в нашем магазине. Но следует сказать, что и пенопласт в качестве утеплителя тоже имеет право на существование.

Экструдированный пенополистирол (ТехноНИКОЛЬ, Пеноплэкс, Батэплекс, Истплекс) – один из лучших вариантов для утепления фасада, фундамента, пола, плоской крыши. Дом, утепленный XPS, будет иметь лучший микроклимат в сравнении с домом утепленным пенопластом.

Сравнить пеноплекс и пенопласт, сравнение пенопласта и пеноплекса, сравнительные характеристики пенопласта и пеноплекса

Оглавление Скрыть ▲ Показать ▼

Самым, пожалуй, известным на сегодняшний день материалом для наружного и внутреннего утепления стен является пенополистирол (пенопласт). Конкуренцию ему составляет экструдированный пенополистирол, известный под названием пеноплекс и некоторыми другими. Поставим себе задачу сравнить пеноплекс и пенопласт и решить – что же все-таки предпочесть для теплоизоляции частного дома.

Разница между пенопластом и пеноплексом

Прежде, чем начинать сравнение свойств пеноплекса и пенопласта, уточним, в чем разница между этими материалами. Оба они производятся из полистирола, однако с использованием различных технологий. Пенопласт (пенополистирол) получают путем вспенивания полистирола, он представляет собой плиты из спекшихся газонаполненных гранул. Внутри них имеются микропоры, а между гранулами находятся пустоты. Чем плотнее спрессованы гранулы, тем больше плотность пенопласта, тем ниже его паропроницаемость и водопоглощение. По сравнению с пенопластом пеноплекс, или экструдированнный пеноплистирол, производят по-другому – методом экструзии, с использованием повышенных температуры и давления, в результате чего готовый материал имеет равномерную структуру с закрытыми порами, диаметр которых не превышает 0,2 мм.

Сравнительные характеристики пенопласта и пеноплекса

Теперь посмотрим на сравнительные характеристики пенопласта и пеноплекса. Важнейшими из качеств, которыми должны обладать теплоизоляторы, являются теплопроводность и паропоглощение. Нелишним, проводя сравнение пенопласта и пеноплекса, будет привести значения прочности на сжатие.

Теплопроводность

Сравнительная таблица теплопроводности пенопласт пеноплекс (возьмем для примера материалы одинаковой плотности) показывает следующие цифры: пенопласт – 0,04 Вт/мК, пеноплекс – 0,032 Вт/мК. Это означает, что на плиту экструдированного пенополистирола толщиной 20 мм приходится примерно 25 мм пенопласта. Описывать подробно таблицу не будем, так как сравнение теплопроводности пенопласта и пеноплекса нужно проводить с учетом плотности конкретной марки изолятора, а мы такой задачи не ставим.

Влагопроницаемость

Следующая характеристика, которая нас интересует – сравнение свойств пеноплекса и пенопласта по влагопроницаемости. В то время, как водопоглощение первого не превышает 0,4 %, второй материал достигает в этой характеристики цифры в 2%. Иными словами, сравнение этой характеристики пенопласта и пеноплекса – в пользу последнего. При применении экструдированного пенополистирола вполне допускается отсутствие пароизоляции, однако при правильном утеплении с помощью пенопласта это нежелательно.

Прочность

Показательно сравнить пеноплекс и пенопласт по прочности на сжатие. В первом случае эта величина достигает 0,5 Мпа, во втором – всего 0,2 Мпа. При этом нужно учесть, что сравнительные характеристики пенопласта и пеноплекса одной толщины и плотности делают очевидной почти четырехкратную разницу! Именно поэтому пеноплекс хорош для системы утепления полов в конструкциях с высокими нагрузками – его используют в гаражах, на катках и даже при строительстве взлетно-посадочных полос.

Цена

Конечно, сравнительная таблица теплопроводности пенопласт пеноплекс, разница между иными техническими характеристиками важны.

Однако для простого обывателя существует еще один немаловажный фактор, который он непременно учтет, проводя сравнение пенопласта и пеноплекса. Это цена. Очевидно, что утеплитель пеноплекс находится в более высокой ценовой категории, чем пенопласт; кубометр экуструдированного пенополистирола дороже примерно в полтора раза. Здесь находится камень преткновения для многих хозяев: утеплить дешевле, но хуже, или дороже, но качественней? Многие, сравнив цены на пеноплекс и пенопласт, выбирают последний из-за стоимости.

Сравнивая свойства пеноплекса и пенопласта, нужно помнить, что для многих целей предпочтительнее именно пенопласт. Такая его характеристика, как более высокое влагопоглощение, может сыграть на руку при наружном утеплении стен, где недостаточно хорошая адгезия пеноплекса не позволяет использовать его выше цокольных конструкций.

В заключение заметим, что в строительстве экструдированный пенополистирол все чаще заменяет пенопласт. В США и во многих европейских странах применение пенопласта для отделки фасадов зданий вообще запрещено из-за ядовитых токсинов, которые он выделяет при горении. В России при строительстве домов также постепенно отказываются от использования этого материла, заменяя его пеноплексом (который, кстати, тоже довольно пожароопасен) либо негорючей минеральной ватой.


Теплопроводность и плотность пеноплэкса, сравнение с пенополистиролом ПСБ

Представлена сравнительная таблица значений коэффициента теплопроводности, плотности пеноплэкса и пенополистирола ПСБ различных марок в сухом состоянии при температуре 20…30°С. Указан также диапазон их рабочей температуры.

Теплоизоляцию пеноплэкс, в отличие от беспрессового пенополистирола ПСБ, производят при повышенных температуре и давлении с добавлением пенообразователя и выдавливают через экструдер. Такая технология производства обеспечивает пеноплэксу закрытую микропористую структуру.

Пеноплэкс, по сравнению с пенополистиролом ПСБ, обладает более низким значением коэффициента теплопроводности λ, который составляет 0,03…0,036 Вт/(м·град). Теплопроводность пеноплэкса приблизительно на 30% ниже этого показателя у такого традиционного утеплителя, как минеральная вата. Следует отметить, что коэффициент теплопроводности пенополистирола ПСБ в зависимости от марки находится в пределах 0,037…0,043 Вт/(м·град).

Плотность пеноплэкса ρ по данным производителя находится в диапазоне от 22 до 47 кг/м3 в зависимости от марки. Показатели плотности пенополистирола ПСБ ниже — плотность самых легких марок ПСБ-15 и ПСБ-25 может составлять от 6 до 25 кг/м3, соответственно.

Максимальная температура применения пенополистирола пеноплэкс составляет 75°С. У пенопласта ПСБ она несколько выше и может достигать 80°С. При нагревании выше 75°С пеноплэкс не плавится, однако ухудшаются его прочностные характеристики. Насколько при таких условиях увеличивается коэффициент теплопроводности этого теплоизоляционного материала, производителем не сообщается.

Теплопроводность и плотность пеноплэкса и пенополистирола ПСБ
Марка пенополистиролаλ, Вт/(м·К)ρ, кг/м3tраб, °С
Пеноплэкс
Плиты Пеноплэкс комфорт0,0325…35-100…+75
Пеноплэкс Фундамент0,0329…33-100…+75
Пеноплэкс Кровля0,0326…34-100…+75
Сегменты Пеноплэкс марки 350,0333…38-60…+75
Сегменты Пеноплэкс марки 450,0338…45-60…+75
Пеноплэкс Блок0,036от 25-100…+75
Пеноплэкс 450,0340…47-100…+75
Пеноплэкс Уклон0,03от 22-100…+75
Пеноплэкс Фасад0,0325…33-100…+75
Пеноплэкс Стена0,0325…32-70…+75
Пеноплэкс Гео0,0328…36-100…+75
Пеноплэкс Основа0,03от 22-100…+75
Пенополистирол ПСБ (пенопласт)
ПСБ-150,042…0,043до 15до 80
ПСБ-250,039…0,04115…25до 80
ПСБ-350,037…0,03825…35до 80
ПСБ-500,04…0,04135…50до 80

Следует отметить, что теплоизоляция пеноплэкс благодаря своей закрытой микропористой структуре практически не впитывает влагу, не подвергается воздействию плесени, грибков и других микроорганизмов, является экологичным и безопасным для человека утеплителем.

Кроме того, экструдированный пенополистирол пеноплэкс обладает достаточно высокой химической стойкостью ко многим используемым в строительстве материалам. Однако некоторые органические вещества и растворители, приведенные в таблице ниже, могут привести к размягчению, усадке и даже растворению теплоизоляционных плит.

Химическая стойкость теплоизоляции пеноплэкс
Высокая хим. стойкостьНизкая хим. стойкость
Кислоты (органические и неорганические)Ароматические углеводороды (бензол, толуол, ксилол)
Растворы солейАльдегиды (формальдегид, формалин)
Едкие щелочиКетоны (ацетон, метилэтилкетон)
Хлорная известьЭфиры (диэтиловый эфир, этилацетат, метилацетат)
Спирт и спиртовые красителиБензин, керосин, дизельное топливо
Вода и краски на водной основеКаменноугольная смола
Аммиак, фреоны, парафины, маслаПолиэфирные смолы (отвердители эпоксидных смол)
Цементы, строительные растворы и бетоныМасляные краски

Источники:

  1. ООО «Пеноплэкс СПб».
  2. ГОСТ 15588-86 Плиты пенополистирольные. Технические условия.

Сравнительный обзор характеристик популярных утеплителей

При создании теплоизоляционного слоя порой возникает вопрос выбора — какому же материалу отдать предпочтение. Для облегчения данной задачи ниже будет дано подробное сравнение утеплителей по основным характеристикам. На основе этих данных будет легче сделать единственно верный выбор.

Какие утеплители будем сравнивать

Сегодня используется более сотни различных материалов для создания защиты от холода. Однако далеко не все из них можно порекомендовать (например, стекловату из-за её вредности и горючести). Поэтому далее рассмотрим лишь наиболее приемлемые варианты, а именно:

  • Пеноплекс. Самый дорогой из утеплителей.
  • Пенопласт. Его собрат, который наоборот — самый дешевый (почти бесплатный).
  • Каменную (или базальтовую) минеральную вату. Не путайте со стекловатой.
  • Керамзит. Насыпной материал, который применяется исключительно для пола и потолка.

Анализируем ключевые показатели

Далее будет представлен сравнительный обзор по важнейшим характеристикам, которые напрямую влияют на эффективность утепления.

Главная характеристика — теплопроводность

Под этим понятием подразумевается способность материала пропускать через себя тепло. Чем меньше данный показатель, тем эффективнее утеплитель и тем меньший его слой требуется для организации надежной защиты от холода. Рассмотрим описываемые нами модели в порядке возрастания коэффициента теплопроводности:

  • Пеноплекс: 0,039 Вт/м*с (это средний показатель, он может меняться в зависимости от конкретной марки).
  • Базальтовая вата: 0,04 — 0,05 Вт/м*с.

Совет: показатель теплопроводности можно посмотреть на упаковке. У разных производителей данный коэффициент может розниться в связи с особенностями технологии производства.

  • Пенопласт: 0,055- 0,065 Вт/м*с.
  • Керамзит: 0,07-0,1 Вт/м*с.

Можно заметить, что пеноплекс эффективнее того же керамзита почти втрое. Это значит, что его слой может быть меньше в 3 раза с такими же показателями.

Плотность (от неё зависит вес)

В данном аспекте за явным преимуществом лидирует пенопласт. Он имеет невероятно маленькую плотность, поэтому его панели очень легкие. С ним может работать даже ребенок. Немного тяжелее пеноплекс (это связано с технологией его производства, в результате которой он приобретает свои прочностные характеристики).

Минеральная вата гораздо тяжелее. В зависимости от конкретной марки, вес рулона может достигать 30-35 кг, что может создать значительные трудности при монтаже. Самым тяжелым в своем классе является керамзит. Именно поэтому его используют исключительно для пола.

Влагостойкость и стойкость к естественным раздражителям

Пеноплекс, пенопласт и керамзит абсолютно устойчивы к повышенной влажности. Поэтому их свободно можно использовать для прокладки в ванных комнатах и туалетах. Этого нельзя сказать про минеральную вату. Некоторые производители по неизвестным причинам приписывают ей повышенную влагостойкость, но на самом деле это не так. При таких условиях она начинает резко терять свои теплоизоляционные свойства, так как хорошо впитывает влагу.

Горючесть

Единственным негорючим материалом, из рассматриваемых нами, является керамзит. Он изготавливается на основе глиняных гранул, которые выдерживают огромные температуры. Именно поэтому его часто используют в сфере промышленности, где высоки риски возгорания.

По непонятным причинам некоторые производители базальтовой ваты и пеноплекса заводят в заблуждение своих клиентов, говоря о высокой огнестойкости. На самом деле они оба относятся к классу Г4 горючести. Худшим вариантом в данном аспекте является пенопласт. Он не только отлично горит, но и выделяет чудовищно вредные вещества.

Сравниваем экологичность

Явным аутсайдером в данном компоненте выглядит пенопласт. При относительно высокой температуре (в летние дни, или зимой при включенном отоплении) он выделяет едкие пары. На большинство людей они практически не оказывают влияния, но для аллергиков это может стать проблемой. В случае пожара, выделение этих веществ будет просто губительным.

Второе место с конца можно отдать пеноплексу. При нормальных условиях он, конечно же, не выделяет ничего вредного. Однако при горении в воздух будет попадать немало едких веществ. Остальные рассматриваемые теплоизоляционные материалы обладают абсолютной экологической безопасностью.

Заключительные выводы эксперта

На основе проанализированной выше информации, можно обозначить несколько ключевых выводов:

  1. Если есть необходимость в экономии средств, то лучшим вариантом выглядит пенопласт. Нет смысла приобретать дорогие материалы, создавая из них тонкий слой. Если тщательно соблюсти технологию монтажа (не допуская щелей, заделывая стыки герметиком), то из пенопласта можно создать весьма эффективный теплоизоляционный слой.
  2. При отсутствии проблем с деньгами, идеальный вариант — пеноплекс. Он лучший по многим характеристикам, при этом очень легко монтируется.
  3. Для зданий с высокой степенью опасности возгорания (например, при наличии дровяной печки) лучше всего использовать керамзит. Только он абсолютно устойчив к прямому воздействию огня.
  4. В помещениях с повышенной влажностью следует использовать пенопласт или его более дорого «собрата», так как они лучшие в данном компоненте.
  5. Своего рода «золотой серединой» в отношении цены и качества является базальтовая вата. Однако помните о её недостатках (они представлены выше).

Что заменяет полистирол толщиной 5 мм. Утепление кровли, стен и перекрытия пенопластом. расчет и сравнение со значением для кирпича, минваты и дерева

Лист пенопласта толщиной 5 см какую кладку кирпича заменяет? А 8 см?

  1. Читаю ответы и фигею. Каким же бивнем нужно быть, чтобы отвечая на вопрос по эквивалентности кирпича и пенопласта сравнивать их несущие способности… Конечно сравнивают теплопроводность…
  2. 5 см пеноплекса это пол метра кирпича!!! И не слушайте оленеводов!
  3. И кирпич и пенопласт разные бывают.

    Формально в 10 раз теплопроводность красного кирпича больше, чем высокопористого пенопласта. (0,56 и 0,05 Вт/м*град — соответственно)

    Т. е. смело толщину пенопласта на 11 умножайте и получите толщину кирпичной стенки.

  4. Здравствуйте Лучшая самая! 😉

    Вы про условия (параметры) оценки забыли упомянуть.. .

    1)Если имеется ввиду теплопроводность?. .
    Инженер Вам ответил.

    2)Если речь идт о механической прочности?. .
    Пенопласт кирпичу НЕ замена. Особенно в сейсмоопасных регионах.

    3)Долговечность?
    Кирпич будет служить дольше.

    4) Стойкость к воздействию окружающей среды (перепады температуры, влажности и пр.) ?
    Пенопласт, в данном случае, даже Не строительный материал.. .

    5)Базопасность (физиологическая, химическая, экологическая) ?..
    Опять же сравнение будет в пользу обоженной глины (кирпича).. .

    И вообще.. . Не тому Вас учат.. . ;-(
    Пенопласт НЕ есть хороший выбор материала для строительства или отделки помещений.
    И в этом ODIN, абсолютно, прав.. .

    Удачи Вам! 😉

  5. никакую
  6. Экструдированный пенополистирол Экстраплекс толщиной 20 мм по своим тепло- и звукоизолирующим свойствам эквивалентна кирпичной стене толщиной 370 мм

На современном рынке строительных материалов представлен широчайший выбор различных утеплителей, применение каждого из них обусловлено определенными требованиями в зависимости от назначения здания, условий эксплуатации и климата в данном регионе. Большинству требований, предъявляемых к утеплителям, соответствует пенопласт, который прочно занимает одну из лидирующих позиций на рынке нашей страны.

Преимущества материала

Пенопласт или пенополистирол представляет собой массив из спаянных между собой газонаполненных гранул полистирола, предварительно вспененных и отформованных беспрессовым методом. Материал изготавливается разной плотности, она зависит от размера и количества гранул в 1 м³. Если гранулы крупные, их количество на единицу объема будет меньше, а плотность материала ниже и наоборот, большое количество маленьких гранул придает ему высокую плотность и уменьшает теплопроводность. Пенопласт имеет ряд преимуществ, который и делает этот утеплитель таким популярным:

  1. Превосходные теплоизоляционные показатели одни из самых высоких. Более высокие теплоизоляционные свойства имеет только пенополиуретан, но стоимость его гораздо выше.
  2. Небольшой вес упрощает процесс доставки и монтажа.
  3. Пенополистирол практически не впитывает влагу.
  4. Современный пенопласт экологичен.
  5. Не поддерживает горение, при воздействии высоких температур материал просто разрушается без воспламенения.
  6. Изделия из пенополистирола обладают прочностью и жесткостью.
  7. Материал один из самых доступных по цене.

Из недостатков этого утеплителя можно выделить два существенных: он не может быть использован при высоких противопожарных требованиях к зданию или помещению, поскольку при пожаре разрушится. Второй недостаток заключается в том, что пенополистирол грызут мыши. Они это делают с целью обустроить себе теплое гнездо, а не ради пропитания, что еще раз доказывает экологичность материала, в базальтовой вате мыши гнезд не делают.

Вернуться к оглавлению

Свойства и параметры утеплителя

Теплопроводность – это передача тепловой энергии от одной части материала, которая имеет более высокую температуру, к другой части, с меньшей температурой. То есть, простыми словами, это способность материала проводить тепловую энергию. Выражается этот параметр в единицах Вт/(м*К) и называется коэффициентом теплопередачи.

Расшифровка единицы измерения теплопередачи следующая: это количество тепловой энергии в Вт, которую способен передать материал толщиной 1 м на площади в 1 м² при перепаде температур 1 °(Кельвин) за определенную единицу времени. Коэффициент теплопередачи уменьшается по мере того, как повышается плотность материала, то есть чем выше плотность, тем лучше его теплоизоляционные свойства. Значения характеристик при различной плотности представлены в Таблице 1.

Таблица 1

Величина теплопроводности является ключевой для расчета общего сопротивления теплопередаче ограждающих конструкций здания (стен, кровли, перекрытий). Последнее обозначается латинской буквой R, единица выражается в м² К / Вт и показывает, сколько тепла в Вт проходит через 1 м² площади стены или кровли заданной толщины за единицу времени при перепаде температур 1°К. Этот параметр зависит от материала стены и ее толщины, это видно из формулы:

Здесь δ – толщина стены в метрах, k – коэффициент теплопроводности. Для примера можно показать сколько тепла теряет 1 м² пенополистирола толщиной 1 сантиметр плотностью 10 кг / м³ за единицу времени при перепаде температур 1°К:

R = 0,01 / 0,044 = 0,227 м² К / Вт.

Данный параметр нормируется, он не может быть меньше того, что прописан в нормативной документации для каждого региона. Учитывая разницу климатических условий на просторах нашей страны и длительность отопительного сезона, минимальное нормируемое сопротивление теплопередаче наружных стен для южных регионов составляет 1,8 м² К / Вт, средней полосы – 3 м² К / Вт, а северных – 4,8 м² К / Вт. Значения R для пенопласта разной плотности и различной толщины отражены в таблице 2.

Таблица 2

Из таблицы 2 хорошо видно, что пенопласт толщиной 100 мм может полностью заменить другие строительные материалы стен в южных и средних регионах, так как такая конструкция соответствует современным требованиям нормативной документации (СНиП 23-02-2003). Материал толщиной 5 см и 2 см может применяться для дополнительного утепления существующих зданий из кирпича или бетона, так как ограждающие конструкции этих зданий не соответствуют современным требованиям по энергосбережению. При этом утеплитель толщиной 2 см зачастую целесообразно использовать для отделки стен изнутри помещения, это дешевле, чем выполнять наружные работы, и не отнимет много места от пространства комнаты.

Пенопласт (пенополистирол) и минеральная вата – самые популярные на сегодня теплоизоляционные материалы. У каждого из них есть свои достоинства и недостатки, есть и своя сфера применения. Пенопластовые плиты рекомендованы к использованию для наружной теплоизоляции стен, минвата – для утепления крыш и в качестве теплоизолятора при монтаже навесных фасадов. Тем не менее, бытует мнение, что эти материалы взаимозаменяемы. Так ли это? Попробуем разобраться.

Пенопласт: плюсы, минусы и особенности применения

Пенопласт – вспененный пластический материал – имеет чрезвычайно малый коэффициент теплопроводности. Это лучший теплоизолятор на планете. Подсчитано, что пенопластовая плита толщиной 10 см по теплозащитным свойствам заменяет 40 см дерева, 60 см газобетона, 90 см керамзитобетона, 150 см пустотного кирпича, 400 см железобетона.
Выигрывает пенопласт и в сравнении с минватой: 10 см пенопласта эквивалентны по теплозащите 16 см минеральной ваты.
Но вот от шума пенополистирольный пенопласт уберечь не может. Звукоизолятор из него никакой.

Что касается паропроницаемости, то эта характеристика варьируется в зависимости от плотности материала. Низкоплотный пенопласт по паропроницаемости близок к вате, высокоплотный – хоть с трудом, но пар пропускает, поэтому его можно использовать для изоляции только очень плотных стен.

Относительно экологической чистоты пенополистирола единого мнения нет. Споры по поводу токсичности полистирола длятся не один десяток лет. Еще советские ученые доказали, что в определенных условиях этот материал способен выделять токсичный стирол в окружающую среду. Однако результаты современных лабораторных исследований говорят о том, что качественный пенополистирольный пенопласт абсолютно безвреден. То мизерное количество стирола, которое он выделяет, не оказывает никакого воздействия на организм человека.
Совет: перед покупкой обязательно уточните содержание остаточного стирола – значение данного показателя должно находиться в пределах 0,01-0,05%.

От качества пенопласта зависит и срок его службы. Самые долговечные – беспрессовые марки ПСБ и ПСБ-С. Они не меняют своих свойств на протяжении 10-40 лет. Экструзионный служит еще дольше – до 80 лет.
Самая большая проблема пенополистирола – высокая горючесть. Стирольный пенопласт может загореться от одной искры. Под воздействием огня он плавится и выделяет черный токсичный дым. Для решения этой проблемы в пенопласты стали вводить специальные добавки – негорючие и гасящие пламя. Так появился новый тип пенополистирола – самозатухающий марки ПСБ-С. Искрой этот материал не поджечь, но от пожара он защиты не имеет.
Важно: все типы полистирольных пенопластов должны применяться исключительно для устройства наружной изоляции.

Минвата: основные свойства, достоинства и недостатки

Минеральная («каменная») вата – волокнистый материал, получаемый плавлением магматических горных пород. Достоинства минваты предопределены свойствами исходного сырья.

Несомненный плюс этого минерального утеплителя – огнестойкость. Температура плавления минваты – 800С. Она не только сохраняет все свои свойства при пожаре, но еще и препятствует распространению огня.
Минеральная вата занимает второе место по теплоизолирующим свойствам после пенопласта, но при этом обладает высокой гигроскопичностью – во влажной среде ее теплозащитные свойства значительно ухудшаются. Но в отличие от пенопласта минеральная вата не препятствует прохождению пара – выпадающий конденсат свободно проходит сквозь ее волокнистую структуру и испаряется с поверхности.

Еще одно преимущество минерального утеплителя – великолепные звукоизолирующие свойства. Вата из камня создает надежную преграду на пути прохождения звуковых волн.
Один из главных минусов этого материала – большой вес. При расчете стоимости утеплителя следует учитывать стоимость погрузки/разгрузки и доставки на стройплощадку. Кроме того, минеральные плиты требуют более мощных опор, в то время как пенопласт почти не добавляет веса строительным конструкциям.
Относительно экологической безопасности: есть данные, что одна из фракций волокон, образующих минвату, обладает канцерогенными свойствами, а используемый в ее производстве вяжущий материал выделяет высокотоксичное и чрезвычайно вредное для человека вещество – формальдегид. Как и пенопласт, минеральный утеплитель рекомендован для обустройства внешней изоляции.

Что лучше: пенопласт или минвата?

Сравним эти два материала по основным показателям:

  • Теплоизолирующие свойства. По теплопроводности пенопласту нет равных. Проигрывает ему и минвата.
  • Пожаробезопасность. Минеральная вата обладает высокой устойчивостью к возгоранию, чего нельзя сказать о пенопласте.
  • Паропроницаемость. Минвата превосходит пенопласт по паропроницаемости примерно в 10 раз.
  • Гигроскопичность. Пенопласт может использоваться во влажной среде без потери потребительских свойств. Каменная вата критична к воздействию влаги.
  • Стоимость. Здесь выигрывает пенопласт – это самый дешевый стройматериал.
  • Вес и удобство монтажа. Пенопласт весит намного меньше минваты. Его удобней обрабатывать, но трудней стыковать.
  • Экологическая безопасность. И тот и другой материалы не рекомендованы для проведения внутренних работ.
  • Биологическая и химическая стойкость. Минвата обладает устойчивостью ко всем органическим веществам и грибкам. Пенополистирол критичен к воздействию органических растворителей, но при этом не подвержен

Как видите, выбор утеплителя – задача сложная и многоплановая. При ее решении следует учитывать конкретные условия и собственные приоритеты. Отдавайте предпочтение проверенным системам утепления. Не забывайте и о подборе оптимальной толщины теплоизоляции.

Недавно утеплял балкон, если интересно .

Из современных теплоизоляторов пеноплекс считается самым эффективным. Изготавливается этот утеплительный материал из экструдированного полистирола, что автоматически делает его дешевым, но превосходящим по техническим характеристикам, таким, как , влагопоглощение и звукоизоляция, другие теплоизоляторы.

Производство пеноплекса и разновидности материала

Производство пеноплекса организовано по следующей технологии: мелкие гранулы полистирола в герметичной камере подвергаются воздействию высокой температуры (130 0 С-140 0 С), вследствие чего расплавляются, а после добавления порофоров вспениваются. Порофоры – это синтетические добавки, которые в процессе нагревания выделяют азот и углекислый газ, превращающиеся после остывания пеноплекса в застывшие воздушные пузырьки, равномерно распределенные по всему материалу.

Составляющие компоненты порофоров для производства экструдированного пенополистирола (пеноплекса):


Застывшая пена может содержать некоторые синтетические наполнители, присутствие которых определяет направленность применения утеплителя – для стен, фундамента, и т.д. Самые распространенные добавки – антипирены для повышения пожаробезопасности (снижения степени возгораемости), антиоксиданты для предохранения материала от окисления на открытом воздухе, антистатические вещества для снятия статического и динамического напряжения в ходе эксплуатации утеплителя, световые стабилизаторы (предохранение от негативного влияния УФ излучения), модифицирующие добавки и др.

Полистирольная пена под давлением выдавливается из камеры-экструдера на транспортер для окончательного формирования в плиты или блоки. Процент газов в утеплителе достигает 98% от всего объема готового пеноплекса, поэтому изделия имеют небольшой вес при внушительных габаритах. Размеры для каждой функциональной линейки утеплителя приведены в таблицах ниже.

Маленький размер пор (0,1-0,3 мм) и полная изоляция их друг от друга гарантирует высокие теплоизоляционные показатели любых марок пеноплекса. Для разных строительных объектов необходимо подбирать соответствующие серии и марки утеплителя, так как сооружения могут эксплуатироваться в разных условиях:

  1. Марка «К» разработана для утепления скатной или плоской кровли и крыши. Удельный вес (плотность) серии «К» – 28-33 кг/м 3 ;
  2. Серия «С» – утеплитель для внутренних и внешних стен с плотностью вещества 25-35 кг/м 3 ;
  3. Маркой «Ф» , цокольные и подвальные помещения. Материал с высокой влагонепроницаемостью, биологической устойчивостью и удельной массой ≥37 кг/м 3 ;
  4. Пеноплекс марки «Комфорт» – универсальная серия утеплителя с плотностью 25-35 кг/м 3 . Направление применения – утепление квартир, домов, подвалов, балконов и лоджий;
  5. Марка «45» имеет самые высокие показатели морозостойкости и прочности, удельная масса 35-47 кг/м 3 . Предназначен для теплоизоляции дорожного полотна, ВПП, и других сильно нагружаемых объектов и конструкций.

Отдельной категорией производятся сэндвич-панели, которые представляют собой усовершенствованный теплоизолятор для утепления чердаков и мансард, фасадов и фундаментов зданий. Сэндвич-панель имеет 2-3 слоя и цементно-стружечный лист в качестве нижней прослойки.

Эксплуатационно-технические свойства пеноплекса, достоинства и недостатки

  1. Теплопроводность – 0,03 Втм· 0 С, показатель не уменьшается даже при сильном увлажнении;
  2. Водонепроницаемость – 0,4-0,6% при погружении в воду на 24 часа и на месяц;
  3. Паропроницаемость материала можно сравнить с такими же показателями рубероида с толщиной слоев 20 мм;
  4. Химическая пассивность: пеноплекс не реагирует на контакты со строительными растворами и большинством агрессивных веществ. Вещества, с которыми контакт пеноплекса противопоказан: керосин, ацетон, формальдегид, бензол, ксилол, толуол, формалин, метилэтилкетон, эфир, солярка, бензин, деготь, краски и эпоксидныесмолы;
  5. Высокая механическая сопротивляемость к растяжению, сжатию, усилиям на разрыв и разновекторному давлению. Показатель прочности по сжатию у пеноплекса – 0,2-0,5 Мпа;
  6. Биологическая нейтральность – пеноплекс не заболевает плесенью, не разлагается и не загнивает;
  7. Широкий разброс рабочих температур – от -50 до +75 0 С. Температурный диапазон для каждой марки указывается на упаковке;
  8. Группы горючести для разных марок – разные, от Г1 до Г4, в зависимости от условий эксплуатации;
  9. Экологически безопасный материал без использования в производстве фенолов и фреонов;
  10. Гарантированная длительность эксплуатации ≥55 лет без заметных потерь в свойствах.

Достоинства пеноплекса:

  1. Свойства теплопроводности позволяют использовать пеноплекс даже на Крайнем Севере – многократные циклы заморозки/разморозки материала не влияют на его характеристики;
  2. Небольшой вес делает проще перевозку, складирование, хранение и утепление объекта, позволяет облегчить фундамент и не усиливать потолочные перекрытия;
  3. Простой монтаж без помощи специалистов и специальных инструментов – пеноплекс легко режется обычной ножовкой или резаком;
  4. Безопасность и экологичность – с материалом можно работать без средства индивидуальной защиты;
  5. Низкая стоимость всех марок утеплителя. Даже при большом расходе теплоизолятора затраты на его приобретение и монтаж окупаются за 2-3 сезона.

Недостатки пеноплекса:

  1. Невысокая пожаробезопасность – материал любой группы горючести, даже с антипиреновыми добавками, может загореться с выделением едкого токсичного дыма;
  2. Низкий коэффициент паропроницаемости, а при определенных погодных условиях – отрицательный. Поэтому пеноплексом не рекомендуется проводить внутренне утепление стен дома. Для сохранения оптимальных условий эксплуатации утеплителя нужно обеспечить приточно-принудительную вентиляцию в доме и вентилирование каналов в стенах, утепленных пеноплексом;
  3. Разрушение материала при попадании ультрафиолетового излучения – солнечных лучей. Необходимо защищать слой утеплителя штукатуркой или другими способами;
  4. Из-за гладкой поверхности адгезия пеноплекса с растворами довольно низкая, поэтому крепить утеплитель нужно только на дюбеля или специальный дорогостоящий клей, но не на строительные растворы.

Теплоизоляционный материал «Стена» – свойства и характеристики

Марка «Стена» – это переименованный утеплитель «Пеноплэкс 31» с антипиреновыми добавками, который усовершенствован для применения в утеплении «мокрых» фасадов, оснований зданий, цоколей и подвалов, перегородок и стен домов снаружи и изнутри, крыш и чердачных помещений. Характеристики пеноплекса марки «Стена» – в таблице ниже:


Утеплитель марки «Фундамент» – параметры и свойства

Марка «Фундамент» – это переименованный утеплитель «Пеноплэкс 35» без антипиреновых добавок, который теперь можно применять при создании теплоизоляции для оснований и цоколей зданий, отмосток и подвальных помещений. Прочность, водонепроницаемость и теплопроводность серии » являются его основными достоинствами. Характеристики «Фундамента» приведены в таблице ниже:


Пеноплекс «Кровля» – свойства и характеристики

Утеплитель из пеноплекса серии «Кровля» – это переименованный материал «Пеноплэкс 35», который рекомендуется использовать в утеплении скатных и плоских кровель любой конструкции. Применение серии «Кровля» делает дальнейшую эксплуатацию крыши максимально упрощенной, так как надежность и длительный срок эксплуатации утеплителя минимизируют возможность ремонта поверхности крыши. Популярность этого инновационного утеплительного материала вызвана и тем, что на такой поверхности можно устраивать оранжереи и летние сады – такие течения сейчас в моде. Пеноплэкс выдерживает настолько высокие нагрузки, что груз грунта до нескольких тонн ему нипочем. Характеристики марки утеплителя пеноплекс «Кровля» – в таблице ниже:


«Комфорт» – универсальная марка теплоизолятора

Марка теплоизолятора «Комфорт» – свойства и характеристики

Пеноплекс «Комфорт» – это модифицированный и усовершенствованный «Пеноплэкс 31С» с универсальными характеристиками. Материал активно используется при утеплении дачных построек, загородных домов и коттеджей. Высокая скорость монтажа и минимальные трудозатраты популяризуют утеплитель у частных домовладельцев – его используют для утепления чернового пола, фундамента и подвала дома, цоколя и кровли, стен и перегородок изнутри и снаружи здания. Пеноплекс «Комфорт» имеет высокие показатели по влагонепроницаемости и теплопроводности. В линейке серии пеноплекс марка «Комфорт» признана универсальной.

Пеноплекс предохраняет грунт от пучения при промерзании – при утеплении почвы этим материалом точка промерзания грунта поднимется. Эта серия оптимальна при утеплении дорожного и ж/д полотна, ВПП и технических площадей аэродромов. Плиты «Комфорт» сохраняют свои уникальные характеристики в течение всего времени эусплуатации. Характеристики марки утеплителя пеноплекс «Комфорт» – в таблице ниже:

Заблуждение думать, что пеноплекс и пенопласт – материалы-братья. Некоторые свойства пеноплекса можно приравнять к параметрам пенопласта, но не горючесть и водопоглощение.

Производители давно освоили изготовление и негорючего пенопласта, и хорошо горящего пеноплекса. Но истина заключается в том, что пеноплекс не может самовозгораться, а в зоне открытого огня он будет только плавиться, выделяя угарный (СО) и углекислый (СО 2) газы. Если пожар ликвидировать, то пеноплекс не будет даже тлеть.

Ниже представлен список часто задаваемых вопросов и ответов, относящихся к теплоизоляции ПЕНОПЛЭКС ® :

Отличия ПЕНОПЛЭКС ® от пенополистирола беспрессового (ПСБ)

Плиты ПЕНОПЛЭКС ® и пенополистирол (ПСБ) отличаются технологией производства. Беспрессовый пенополистирол создается путём «пропаривания» микрогранул водяным паром в специальной форме и их увеличения под воздействием температуры. Теплоизоляцию ПЕНОПЛЭКС ® изготавливают путём смешивания гранул полистирола при повышенной температуре и давлении с введением вспенивающего агента и последующим выдавливанием из экструдера. Именно поэтому пенополистирол ПЕНОПЛЭКС ® называют экструдированным. Также благодаря технологии производства по данной технологии ПЕНОПЛЭКС ® получает закрытую мелкопористую структуру, что в свою очередь обеспечивает высокую прочность, практически нулевое водопоглощение, как следствие — биостойкость и высочайшую долговечность плит ПЕНОПЛЭКС ® . Важным фактором также является более низкая теплопроводность ПЕНОПЛЭКС ® по сравнению с пенополистиролом беспрессовым (ПСБ), что позволяет сократить толщину требуемой теплоизоляции примерно на 30%.

Какой выбрать утеплитель: ПЕНОПЛЭКС ® или минеральная (каменная) вата?

Что лучше ПЕНОПЛЭКС ® или минеральная вата? Это вопрос, который довольно часто возникает у частных застройщиков. Каждый из этих материалов имеет свои плюсы. Например, ПЕНОПЛЭКС ® практически незаменим в нагружаемых конструктивах и влажной среде, при этом минеральная вата лучше показывает себя в звукоизоляции. Кроме того, некоторые типы минеральной ваты имеют более низкую цену, но этот плюс часто сходит «на нет» из-за низкого качества такой ваты, как следствие — большой усадки, а также необходимости большей толщины теплоизоляции.

ПЕНОПЛЭКС ® от минеральной ваты выгодно отличает ряд характеристик:

  • более низкий коэффициент теплопроводности.
  • высокая прочность на сжатие
  • абсолютная влагостойкость (ПЕНОПЛЭКС ® не впитывает воду, благодаря чему сохраняет свои теплоизоляционные свойства в течение всего срока эксплуатации).
  • абсолютная биостойкость (ПЕНОПЛЕКС ® не является матрицей для развития бактерий, плесени и прочих микроорганизмов).
  • удобство при монтаже (ПЕНОПЛЭКС ® не требует специальных средств защиты при работе с ним).

Какая плотность у ПЕНОПЛЭКС ® ?

Плотность плит ПЕНОПЛЭКС ® для частного применения находится в пределах от 23 до 35 кг/м3. Для профессионального сегмента этот показатель может доходить до 45 кг/м3. При этом важно понимать, что плотность ПЕНОПЛЭКС ® не является ключевым фактором при определении сферы применения материала. Более важна такая характеристика, как прочность на сжатие. Прочностные характеристики ПЕНОПЛЭКС ® варьируются в более широком диапазоне. Минимальная прочность на сжатие при 10% деформации у плит ПЕНОПЛЭКС ® составляет 0,12 МПа, такие плиты используются для ненагружаемых конструктивов (например, для утепления стен). Более высокие показатели прочности на сжатие имеют плиты, предназначенные для утепления фундаментов — 0,3 МПа, поскольку именно эти конструкции воспринимают на себя основные нагрузки от здания. Марки ПЕНОЛЭКС ® предназначеные для дорожного строительства и конструктивов с повышенными нагрузками могут иметь прочность 0,50 Мпа и выше.

Широкий диапазон характеристик позволяет использовать плиты ПЕНОПЛЭКС ® для утепления практически любых конструктивов как в коттеджном и малоэтажном, так и в промышленном и гражданском строительстве.

Какая температура плавления ПЕНОПЛЭКС?

Температурный диапазон применения плит ПЕНОПЛЭКС ® находится в интервале от -70 до +75 градусов Цельсия, что позволяет использовать данный материал в любых климатических зонах.

При температуре выше 75 градусов Цельсия ПЕНОПЛЭКС ® может изменять свои механические свойства в сторону уменьшения прочности материала.

Сколько кирпича заменяет ПЕНОПЛЭКС ® ?

Если сравнивать материалы по теплоизолирующим свойствам, то плита ПЕНОПЛЭКС ® толщиной 50 мм (λ=0,034 Вт/м2°C) заменит 1280 мм кладки на теплоизоляционном растворе из кирпича полнотелого одинарного (λ=0,82 Вт/м2°C). (Согласно ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия. Таблица Г.1 — Теплотехнические характеристики сплошных (условных) кладок).

В среднем по теплоизоляционным свойствам 1 см ПЕНОПЛЭКС ® заменяет 25 см кирпичной кладки, но следует помнить — для каждого отдельного вида кирпича (силикатный, керамический, клинкерный) это сравнение будет разным.

Пенополистирола толщина. Характеристики пенопласта, размеры пенопласта, теплопроводность пенопласта


Теплопроводность пенополистирола, особенности и толщина материала

Теплопроводность пенополистирола является одной из важных характеристик, которой интересуются не только профессионалы, но и обычные потребители. Этот материал называется еще пенопластом и является теплоизоляцией, которая на 98% состоит из воздуха. Он заключён в клетки вспененного полистирола.

Структура совершенно безопасна для здоровья, поэтому используется материал для изготовления упаковки для пищевых продуктов. Он легко поддается обработке, нашел свое широкое распространение в области строительства, а также обладает невысокой стоимостью.

Что необходимо знать о теплопроводности пенополистирола

Теплопроводность пенополистирола довольно низкая, ведь воздух, который находится в основе материала, тоже обладает такими характеристиками. Поэтому описываемый параметр изоляции варьируется в пределах от 0,037 до 0,043 Вт/мК, что касается воздуха, то эта характеристика равна 0,027Вт/мК.

Пенополистирол изготавливается по ГОСТ 15588-86 и отличается превосходным энергосбережением, повышенными сроками эксплуатации, способен сокращать затраты на отопление и защищать от промерзания. Такие свойства сохраняются даже при воздействии низких температур и высокой влажности, поэтому использовать пенополистирол можно в условиях складских помещений, а также в конструкциях холодильного оборудования.

Теплопроводность пенополистирола низкая, поэтому использовать данный материал можно не только для внутренней, но и для внешней отделки. Однако данная характеристика будет изменяться в зависимости от плотности. Чем она выше, тем больше содержание стирола, тем хуже пенополистирол будет удерживать тепло. Например, если речь идет об экструдированном пенополистироле, то его теплопроводность составит 0,028Вт/мК, ведь гранулы стирола в этом случае находятся в структуре цельного листа, а щели между ними отсутствуют.

Сравнение теплопроводности у разных марок

Для сравнения можно рассмотреть несколько марок пенополистирола, плотность и теплопроводность у которых отличаются. Плотность ПСБ-С15 не достигает и 15 кг/м3, тогда как теплопроводность составляет предел от 0,07-0,08 Вт/мК. Что касается марки ПСБ-С35, то ее плотность равна пределу от 25,1 до 35 кг/м3, тогда как теплопроводность составляет 0,038 Вт/мК. В продаже можно встретить еще и экструзионный вспененный полистирол. У марки 35 плотность изменяется от 33 до 38, тогда как теплопроводность равна 0,03.

Если перед вами марка 45, то первый параметр будет изменяться в пределах от 38,1 до 45, тогда как второй будет равен 0,032. Теплопроводность пенополистирола гораздо ниже по сравнению с данной характеристикой, свойственной другим материалам. Например, керамзитобетон при плотности в 1200 кг/м3 имеет теплопроводность, равную 0,58.

Сравнение теплопроводности пенополистирола с другими материалами

Во многих областях промышленности и строительства сегодня используется пенополистирол. Теплопроводность, сравнение которой будет упомянуто ниже, довольно низка в этом случае. А вот у минеральной ваты эта характеристика изменяется от 0,07 до 0,08 Вт/мК. Что касается бетона, то теплопроводность у него будет равна 1,30, тогда как у железобетона – 2,04.

Керамзитобетону и пенобетону свойственна теплопроводность, равная 0,58 и 0,37 соответственно. У пенополистирола, для сравнения, теплопроводность равна 0,028Вт/мК. Теплопроводность пенопласта и пенополистирола тоже довольно часто сравнивается. В первом случае это значение составит 0,07, если речь идет о плитах.

Основные особенности: безопасность, звуконепроницаемость и ветрозащитные характеристики

Пенополистирол безопасен, а использовать его можно повторно. При этом в окружающую среду не будут выделяться вредные вещества. Согласно исследованиям, в строительных конструкциях из пенополистирола не обнаружен опасный стирол. Что касается звуконепроницаемости и ветрозащиты, то при использовании пенополистирола нет необходимости дополнительно применять материалы, которые повышают ветрозащитные функции и звукоизоляцию.

Если шумопоглощающие способности необходимо усилить, то толщина слоя материала должна быть увеличена. Теплопроводность экструдированного пенополистирола вам уже известна, однако это – не единственная характеристика, о которой следовало бы знать перед приобретением данного материала. Например, пенополистирол не является гигроскопичным, поэтому не впитывает воду и влагу, не разбухает и не деформируется, а также не растворяется в жидкости. Если поместить пенополистирол в воду, то внутрь структуры проникнет лишь 3% от веса плиты, тогда как свойства материала останутся неизменными.

Пар и вода довольно легко выходят из пенополистирола, поэтому необходимо позаботиться о том, чтобы исключить образование конденсата. Для этого соблюдаются правила проектирования. Влагоустойчивость пенополистирола позволяет использовать его при утеплении фундамента, где неизбежен контакт материала с грунтом.

Дополнительные особенности: биологическая и химическая инертность

Утеплитель пенополистирол, теплопроводность которого была упомянута выше, отличается устойчивостью к химическим и биологическим факторам. Свойства материал сохранит, даже если на его структуру будут воздействовать:

  • мыльные растворы;
  • кислоты;
  • солевые растворы по типу морской воды;
  • отбеливающие средства;
  • нашатырный спирт;
  • гипс;
  • водорастворимые краски;
  • клеевые растворы;
  • известь;
  • цемент.

Что касается кислот, то на пенополистирол не должны воздействовать азотная и концентрированная уксусная кислоты. В процессе монтажа следует исключить доступ к материалу грызунам и термитам, ведь они могут нанести структуре повреждения. Под влиянием бетонных растворов материал может частично распадаться, как и под воздействием органических растворителей. Устойчивость можно определить соотношением открытых и закрытых пор, что зависит от марки и вида изоляции.

Пожароустойчивость пенополистирола

Коэффициент теплопроводности пенополистирола был упомянут выше, но важно знать еще и о пожарной опасности материала, который является сгораемым, но отличается хорошей пожароустойчивостью, ведь температура самовозгорания равна 4910 °С. Если проводить сравнение этого показателя с древесиной, то он в 1,8 раза выше, ведь для дерева будет достаточно всего лишь 2600 °С.

Класс горючести и способность к выделению тепла

Если огонь будет отсутствовать в течение 4 секунд, то материал самостоятельно затухнет. В процессе горения изоляция будет выделять тепло в объеме 1000 МДж/м3, что касается древесины, то этот показатель изменяется в пределах от 7000 до 8000 МДж/м3, это указывает на то, что при горении пенополистирола температура окажется намного ниже. В продаже сегодня можно встретить самозатухающий пенополистирол, который производится с добавлением антипиренов. Но со временем данный эффект теряется, и материал, который относился к группе горючести Г2, со временем будет относиться к классу Г4.

Толщина пенополистирола

Пенополистирол, теплопроводность, толщина которого вам должны быть известны, если вы планируете приобретать данную изоляцию, выпускается сегодня разными производителями. Лист может быть ограничен по толщине в пределах от 20 мм до 20 см. При этом многие потребители задаются вопросом о том, какой лист лучше выбрать. Для определения этого значения нужно поинтересоваться, каково сопротивление теплопередаче. Здесь все будет зависеть от региона страны. Например, в центре Москвы сопротивление стены должно быть равно 4,15 м2°C/Вт, что касается южных регионов, то здесь будет достаточно 2,8 м2°C/Вт.

fb.ru

Толщина пенопласта для утепления: фундамента, стен, крыши

Строя новый дом, необходимую для утепления толщину пенопласта определяет проектировщик, учитывая конструкционный материал, из которого выполнено здание. Утепление здания в разных его местах, следовательно, требует применения иного вида пенопласта разной толщины. Обратите внимание, чтобы толщина пенопласта, которой вы будете изолировать внешнюю сторону фасада, была больше толщины плит изолирующих фундамент. Лучше всего иллюстрирует это следующая таблица.

Оптимальная толщина пенопласта в зависимости от применения

  • для утепления наружных стен фасадов используется чаще всего пенопласт: 12 см-15 см,
  • для утепления полов (в несколько слоев в совокупности): 10 см-15 см,
  • для утепления наклонной крыши: 15 см-25 см,
  • для утепления плоской кровли: 25 см-30 см,
  • для утепления потолков: 5 см,
  • для утепления фундаментов и подвалов: 8 см-12 см.

Толщина для утепления стен

В настоящее время оптимальная толщина пенополистирола для фасада 12 см и 15 см. Все чаще используются толщина 18 см и 20 см.

В случае с пассивными и энергоэффективными домами толщина изоляции из пенопласта (в основном с графитом) наружных стен находится в пределах 15 см-25 см. При использовании серого пенопласта, у нас есть возможность снизить толщину тепловой изоляции на несколько сантиметров. Используя серый пенопласт толщиной 12 см достигается такой же результат по тепроводности, как при применении белого пенополистирола толщиной 15 см.

Утепление стен

Толщина для утепления пола

При изоляции пола используется более твердый пенопласт, чем тот который используется для изоляции наружных стен. Это связано с нагрузкой на поверхность пола, по которому мы будем ходить, класть предметы или, как в случае полов гаража — парковать автомобиль. Пол должен быть крепким, прочным и теплым одновременно, чтобы повысить комфорт его использования.

В первую очередь пол утепленный пенопластом не пропускает холод, исходящий от грунта, пенопласт в межэтажных перекрытиях укладывается для звукоизоляция от шумов. Используется для этого чаще всего пенопласт с маркировкой EPS 038, EPS 037, EPS 036 или акустический пенопласт, например, STK EPS T.

Следует иметь в виду, что минимальная толщина пенопласта для пола на грунте составляет от 8 см до 10 см. Также используется пенопласт толщиной 12 см, 15 см и 20 см, в несколько слоев.

Утепление пола

Толщина для утепления чердака

Перекрытие последнего этажа, чаще всего используется как пол чердака. Это самое холодное место, в которое убегает тепло от нагретых ниже помещений, поэтому необходимо выполнить тщательную теплоизоляцию чердака. Материалом, наиболее часто используемым для выполнения теплоизоляции мансарды является пенопласт толщиной 5 см уложенный в два слоя с перекрытием швов предыдущего слоя. Если чердачное перекрытие выполнено из дерева, то пенопласт укладывается между балками, поддерживающими доски или плиты OSB. Следует иметь в виду, что необходимо оставить несколько сантиметров воздушного пространства между утеплителем из пенополистирола и половыми досками. Если для утепления перекрытия чердака, используется более твердый пенополистирол (EPS 038) или XPS, то из пенополистирола можно уложить финишное покрытие, в качестве слоя основания. Для утепления пола чердака между балками применяются также гранулы из пенополистирола, которые устраняют «так называемый скрип», возникающий в случае изоляции из пенополистирольных плит.

В случае с мансардой, то утеплять пол не имеет смысла, утепляется непосредственно сама кровля, чтобы теплый воздух, поступающий с нижних этажей, обогревал помещения на мансарде.

В случае утепления потолка в неотапливаемом подвале, может быть применен пенопласт следующей толщины:

  • сверху толщина пенополистирола EPS 038, например, 4 см-8 см + слой 5см бетона,
  • снизу пенопласт EPS 040 толщиной 4см-5см + слой клея.

Утепление потолка в подвале

Толщина пенопласта для крыши

Теплоизоляция кровли пенополистиролом потребуется, как в случае строительства скатной крыши, так и плоской. Именно через крышу уходит около 30% тепла, которое поднимается вверх. Теплоизоляция пенополистиролом или XPS производится между стропилами и над стропилами, а также (реже) снизу стропил. Минимальная толщина пенопласта для утепления крыши — это пенопласт 10 см (2х5 см), а оптимальная толщина теплоизоляции из пенополистирола составляет 15 см-20 см. Для утепления крыши лучше всего использовать пенопласт EPS 100-037 или XPS.

Теплоизоляция из пенопласта между стропилами выполняется обычно в том случае, когда кровля крыши уже завершена. При этом необходимо избавиться от всех мостиков холода за счет применения теплоизоляции в два слоя пенополистирола со смещением относительно друг друга.

Теплоизоляция из пенополистирола над стропилами выполняется, как правило, тогда, когда мы строим двускатную крышу. Плиты пенополистирола или XPS должны быть достаточно прочными, чтобы выдерживать вес деревянной конструкции и покрытия крыши. Кроме того, должны обладать малым коэффициентом теплопроводности и впитываемостью влаги. Укладывает их на прикрепленные к стропилам доски.

Утепление мансарды

Толщина для утепления фундамента

На Российском рынке существует множество пенополистирола для теплоизоляции фундаментов. Теплоизоляция фундаментных стен, выполненных с использованием водостойких плит является лучшим вариантом, чем использование стандартных пенополистирольных плит EPS 100-037, и при этом более дешевым, чем применение экструдированного полистирола (XPS). Чаще всего самым продаваемым пенопластом является водонепроницаемый EPS 035 EXPERT компании Austrotherm и EPS 038 HYDRO компании Swisspor с системой многочисленных дренажных канавок. В обоих случаях стандартная толщина для утепления фундамента пенопластом — 10 см 12 см.

Чтобы фасад выглядел эстетично, с применением фасадного пенополистирола 15 см цоколь должен быть на несколько сантиметров тоньше, а значит около 10 см — 12 см. Снятие лицевой стороны цоколя вглубь здания поможет избежать его намокания от дождей.

postroy-sam.info

толщина, плотность и другие параметры, как рассчитать, выбрать, видео, фото

Пенопласт — один из самых эффективных утеплителей.

Утепление пенопластом — наиболее популярный способ теплоизоляции строительных конструкций. Поэтому хочу рассказать, какая толщина пенопласта для утепления дома даст ожидаемый эффект, а также подробно опишу этапы монтажа теплоизоляции.

Особенности утепления пенопластом

Выбор материала

На фото — плиты пенополистирола, который успешно используют для утепления.

Пенопласт, который применяется в строительных целях, это, чаще всего, пенополистирол. Существуют и другие виды пенопласта, но я расскажу о белом ячеистом материале.

Строительный пенопласт имеет ячеистую структуру и белую окраску.

Материал называется пенополистирол (ППС, EPS, ПСБ, ПСБ-С) и производится из расплавленного полистирола путем добавления пенообразователей. Затем полученная пена спекается и полимеризуется, в результате чего получается относительно прочная и легкая субстанция.

Пенопласт демонстрирует неожиданно высокую прочность.

В зависимости от рецептуры и способа производства ППС может обладать разными свойствами. Например, если материал был изготовлен методом экструзии, тогда он будет отличаться повышенной прочностью и меньшей теплопроводностью. А если ППС обработать антипиренами — он не будет поддерживать горение.

Экструдированный пенополистирол или ЭППС.

Очевидно, что пенопласт бывает разный, и наша цель — выбрать из этого многообразия тот вид, который наиболее полно удовлетворит поставленные перед ним задачи. Наша задача — утепление жилья.

Слой утеплителя должен находиться снаружи. Это требование СНиП 3.03.01-87 (ПЗ 2000). Проще всего купить пенопласт для наружных работ, не вникая в нюансы и характеристики. Но такой подход может сыграть злую шутку, и нечистый на руку продавец продаст вам неподходящий дешевый продукт по цене дорогого фасадного пенополистирола.

По строительным правилам теплоизоляция стен производится снаружи.

Как выбрать фасадный пенопласт? Здесь важно учесть несколько характеристик:

  1. Плотность. Плотность пенопласта для утепления фасада должна быть не менее 25 кг/м³. Но практика показывает, что лучше переплатить и взять материал плотностью 35 кг/м³;
  2. Группа горючести. Законодательством РФ запрещено использовать в строительстве материалы, не обработанные антипиренами. Особенно это касается вентилируемых фасадов. Я бы советовал использовать пенопласт группы Г1-Г2 — для «мокрых» фасадов и строго Г1 — для вентилируемых конструкций;
  3. Толщина. Этот показатель зависит от климатических особенностей вашего региона, а также от толщины и материала наружных стен дома.

Сертификат пожарной безопасности на ЭППС.

Плотность и группа горючести указаны в сертификате пожарной безопасности. Толщина рассчитывается индивидуально для каждого случая.

Расчет толщины пенопласта

Утепление стен пенопластом в панельном доме зачастую необходимая мера.

Правильный расчет толщины утеплителя — это важный момент. Дело здесь не только в том, чтобы повысить температуру в квартире, но и, чтобы сдвинуть точку росы (ТР) за пределы стены в толщу утеплителя.

Таблица определения точки росы.

Если точка росы находится внутри стены, возможны такие варианты развития событий:

  • Внутренняя поверхность. Точка росы находится ближе к внутренней поверхности стены или прямо на ней (чаще всего это результат внутреннего утепления). Водяной пар, находящийся в воздухе, начнет конденсироваться на поверхности или недалеко от нее. Стена промокнет, отделка испортится, заведется плесень;
  • Внешняя поверхность. ТР находится ближе к внешней поверхности стены. Внешний слой стены будет намокать, но влага сможет испаряться, так как внешняя поверхность контактирует с улицей и обдувается ветром;
  • За пределами. Точка росы находится за пределами стены в толще пенопласта. Это идеальный вариант, так как внутрь ППС водяной пар не проникает. Следовательно, конденсат не образуется;
  • Посередине. ТР расположена в толще стены примерно посередине. На первый взгляд ничего страшного, но при резком похолодании точка сместится ближе к внутренней поверхности, а конденсат заледенеет. Долговечность стен измеряется количеством циклов замерзания/оттаивания. Следовательно, стена будет разрушаться.

При достижении ТР пар конденсируется в воду.

Разумеется, наша задача заключается в том, чтобы подобрать такую толщину пенопласта, при которой точка росы находилась бы за пределами стены.

Для расчетов нам понадобятся следующие величины:

  1. Толщина стены;
  2. Минимальное сопротивление теплопередаче этой стены для нашего региона;
  3. Теплопроводность материала стены;
  4. Теплопроводность ППС.

Можно использовать таблицу с готовыми данными.

Итак, допустим, что у нас кирпичная стена толщиной 40 см, а живем мы в городе Архангельске. Минимальное сопротивление теплопередаче для этого региона равно R = 5,29 м²* °C/Вт.

Теплопроводность кирпичной кладки на обычном цементном кладочном растворе равна 0,81 Вт/м* °C. Теплопроводность пенополистирола ПСБ-С плотностью 35 кг/м³ равна 0,036 Вт/м* °C.

Теперь нам необходимо определить, имеет ли наша стена минимальное сопротивление теплопередаче. Для этого её толщину делим на величину теплопроводности кирпичной кладки:

0,4/0,81 = 0,49 м²* °C/Вт;

Далее определяем разницу между минимальным и фактическим сопротивлением теплопередаче:

5,29 – 0,49 = 4,8 м²* °C/Вт;

Получается, что утеплитель должен быть с сопротивлением теплопередаче — 4,8 м²* °C/Вт. Если эту величину умножить на коэффициент теплопроводности ППС, то мы получим его толщину:

4,8*0,036 = 0,17 м, округляем и получаем 0,2 м или 20 см.

Теперь вы знаете, как выбрать плотность, группу горючести и как рассчитать толщину плит для утепления вашего жилья. Далее — монтаж.

Монтаж пенополистирола за 29 шагов

Пенопласт лучше класть в сухую погоду, чтобы он не намок.

Тем, кто решился выполнить утепление своими руками, поможет наглядная инструкция:

ИллюстрацияПоследовательность действий
Шаг 1. Подготовка стены.

Поверхность следует подготовить — удалить все наплывы раствора, смести пыль, отбить старую штукатурку.

Шаг 2. Выставляем леса.

Расстояние до стены — примерно полметра.

Шаг 3. Проверяем леса уровнем.

Обязательно выставляем конструкцию строго по горизонтали с помощью строительного уровня.

Шаг 4. Выставляем стойки.

Проверяем вертикальные стойки лесов уровнем. От качества установки лесов будет зависеть безопасность и удобство работы.

Шаг 5. Грунтовка.

Для пористых оснований типа газобетона, пенобетона, а также для кирпича и штукатурки используем грунтовку глубокого проникновения.

Шаг 6. Разводим грунт.

Добавляем в грунтовку от 30 до 50% воды и перемешиваем.

Шаг 7. Наносим грунт.

С помощью строительной кисти (макловицы) наносим грунт на стену. Основания типа пенобетона требуют двойного нанесения грунта.

Шаг 8. Готовим клей.

Берем мешок с клеем для пенополистирола. Клей для плитки или другие виды не подойдут.

Шаг 9. Наливаем воду.

В чистое пластиковое ведро наливаем примерно от трети до половины объема воды. Обязательно сначала воду!

Шаг 10. Высыпаем сухую смесь.

Клей в виде порошка высыпаем в воду. Он должен сравняться с уровнем воды.

Шаг 11. Перемешиваем клей.

Вставляем в патрон дрели миксер и на малых оборотах замешиваем клей. Когда он дойдет до однородной массы, делаем паузу на 5 минут, а затем снова мешаем до консистенции густой сметаны.

Шаг 12. Наносим клей по периметру.

Втираем клей для повышения адгезии по периметру с помощью шпателя.

Шаг 13. Наносим клей по центру.

Теперь наносим три «лепешки» по центральной линии плиты.

Шаг 14. Приклеиваем первый лист.

Берем промазанную клеем плиту и прижимаем к стене. Шнурок нужен для удобства, чтобы не проверять каждый раз правилом.

Шаг 15. Проверяем вертикаль.

С помощью уровня проверяем вертикальность установки плиты.

Шаг 16. Проверяем горизонталь.

Аналогично проверяем соответствие установки горизонтальной плоскости с помощью строительного уровня.

Шаг 17. Вторая плита.

За углом ставим вторую плиту впритык к выступающей части первой.

Шаг 18. Обрезаем лишний кусок.

С помощью пилы-ножовки обрезаем лишний кусок плиты.

Шаг 19. Дошли до угла.

Отмеряем оставшийся кусок с учетом той части, которая будет выступать за угол.

Шаг 20. Закончили первый ряд.

Последнюю плиту можно подрезать на месте, когда к ней пристыкуется плита из-за угла.

Шаг 21. Проверяем первый ряд.

Чем ровнее и лучше будет положен первый ряд, тем легче потом будет класть остальные ряды.

Шаг 22. Продолжаем проверять.

Необходимо убедиться, что ряд выложен ровно во всех плоскостях.

Шаг 23. Продолжаем монтаж.

Следующие ряды кладем с перевязкой швов, сдвигая вертикальные соединения не менее чем на 150 мм.

Шаг 24. Внутренний угол.

Внутренние углы делаем с зубчатым зацеплением.

Шаг 25. Приклеиваемая часть.

На углах та часть, которая приклеивается к стене, должна быть в 3-4 раза больше той, которая выступает.

Шаг 26. Проверка плоскости.

Когда стена выложена, важно внимательно проверить плоскость длинным правилом и определить места, которые выступают.

Шаг 27. Шлифовка.

Выступающие места и неровности шлифуем теркой.

Шаг 28. Стеклосетка.

С помощью клея на поверхность пенопласта наносится стеклосетка, которая играет роль армирующего элемента и, кроме того, помогает держаться штукатурке, которая будет нанесена после.

Шаг 29. Штукатурка.

Когда высыхает клей с сеткой, на поверхность наносится декоративная фасадная штукатурка. Она может быть цветная, а может быть покрашена акриловой краской в тот цвет, который вам нравится.

Экструдированный пенополистирол считается более качественным, но его цена ощутимо выше. Окончательного ответа в пользу какого-либо из этих пенопластов нет, так как стоимость порой играет решающую роль.

Вывод

Я рассказал, как правильно подобрать пенопласт для теплоизоляции дома, как рассчитать его толщину, и какую плотность выбрать для фасадных работ. Также я дал наглядную инструкцию по монтажу пенополистирола на стены.

Если вы хотите увидеть процесс своими глазами, смотрите видео в этой статье. А вопросы задавайте в комментариях.

otoplenie-gid.ru

Толщина пенопласта для утепления стен снаружи

В строительной области популярностью среди потребителей пользуется такой материал, как пенопласт. Основное направление его применения – теплоизоляция. Именно поэтому важнейшую роль играет толщина пенопласта для утепления стен.

От этого параметра зависит степень эффективности сохранения тепла в жилище. На современном рынке выбор данного материала довольно большой. Для каждого вида существует специальная маркировка, которая помогает определиться покупателю в выборе его толщины и плотности.

Но, чтобы сделать правильный выбор, первоначально необходимо правильно рассчитать все параметры пенопласта, которые подойдут именно для своего дома.

Что необходимо знать

Пенопласт хорошо переносит влажность

Перед началом работ по обустройству теплоизоляции дома необходимо продумать некоторые моменты, чтобы впоследствии не пришлось исправлять ошибки. Первоначально определяемся:

  • какой материал использовать ;
  • размер слоя теплоизоляции;
  • метод утепления: внутренний или наружный.

Материалов для этих целей много, но одним из них является пенополистирол. Этот строительный материал довольно хорошо справляется со всеми поставленными задачами. Использовать его можно как для наружных, так и внутренних работ.

Чаще всего его применяют для наружного утепления стен жилища.

Основные характеристики

Строительный материал пенопласт состоит из шариков вспененного полистирола, которые спрессованы между собой, и воздуха. К его основным характеристикам можно отнести:

  • абсолютно не токсичен, с успехом используется не только в строительной отрасли, но и при изготовлении упаковки бытовых приборов и в пищевой отрасли;
  • со временем не теряет своих качеств;
  • обладает высокой степенью устойчивости к воздействию влаги, образованию грибка и плесени;
  • довольная высокая степень теплоизоляционных свойств;
  • имеет маленький вес, что обеспечивает простоту монтажа;
  • очень просто можно придать нужные размеры.

Наряду с достоинствами есть существенный недостаток. Этот материал хорошо горит, при этом выделяются токсичные материалы, которые очень опасны для здоровья человека. Этот факт следует учитывать при утеплении стен пенопластом.

Толщина пенопласта

Недостаточный слой утеплителя чреват смещением точки росы

Как уже было сказано, на качество теплоизоляции очень существенно влияет толщина пенопласта для утепления стены снаружи. Ведь если утеплительный слой будет недостаточной толщины, то возможно в холодное время года строение будет промерзать. Это чревато смещением «точки росы» внутрь жилища, а, следовательно, повышенная влажность и запотевание окон и стен.

Многие начинающие строители считают, что чем толще пенопласт, тем лучше. Это ошибочное мнение, так как здесь также существуют свои нюансы. К примеру, желаемый эффект не будет достигнут, а материальные затраты существенно возрастут.

Лучший способ – это правильный расчёт оптимальной толщины утеплителя. При этом необходимо учитывать строительный материал, используемый при возведении жилища, и особенности климата.

Утепление позволит сэкономить на энергоносителе

Перечисленные преимущества подскажут, как выбрать пенопласт:

  • существенные сокращения на затраты, сам материал и работы по монтажу;
  • экономия тепла на энергоресурсы;
  • отпадает необходимость использование дополнительных отопительных приборов, что также позволяет сэкономить семейный бюджет;
  • за счёт утепления стен пенопластом можно уменьшить толщину стен из основного строительного материала;
  • стабилизация температурного режима в помещении;
  • достижение состояния экологии строения;
  • увеличение сроков службы строения, так как пенопласт надёжно защитит стены от влияния климатических факторов.

Как определить толщину

Существенную роль для расчёта толщины пенополистирола играет тепловое сопротивление материала (R). Именно от него зависит качество теплоизоляции здания. Для каждого региона эта величина индивидуальна. Некоторые из них можно просмотреть в представленной таблице.

Если стены состоят из нескольких прослоек, то необходимо суммировать показатели теплосопротивлений для каждого материала.

Расчёт толщины пенопласта производится путём умножения показателей теплового сопротивления и коэффициента теплопроводности, который можно узнать из таблицы.

Плотность пенопласта

Также существенным параметром для обеспечения правильной теплоизоляции, которая влияет на эффективность и долговечность этой процедуры – это плотность пенополистирола. Зависит она от марки материала, минимум 7 кг/м3 и максимум 50 кг/м3. Пенопласт с низкими показателями плотности лучше не использовать для теплоизоляции строения. Подробнее о том, как выбрать материал для утепления фасада, смотрите в этом видео:

Чтобы правильно определиться с данными показателями, предлагается таблица для изучения, в которой указаны характеристики теплоизоляционных материалов.

Изучив все данные, можно сделать вывод, что для утепления стен снаружи лучше всего подходит пенопласт плотностью 25кг/м3, 35кг/м3 и 50кг/м3.

Потребители, выбравшие другие марки, не смогут обеспечить нужный результат, так как они либо не достаточно прочны, либо не обладают необходимой степенью теплопроводности.

Пенопласт плотностью 50 кг/м3 довольно дорогой, поэтому оптимальным вариантом остаются плиты с плотностью 25 кг/м3, 35 кг/м3. Для теплоизоляции стен лучше использовать первый вариант, а второй – для утепления полов.

Важно правильно подобрать габариты плит, чтобы расходовалось как можно меньше материала

Следующий параметр, на который также стоит обратить внимание, это габариты плит. Особенно это касается начинающих строителей. Приведём перечень размеров плит, которые предоставляются сейчас на строительном рынке:

  • 0, 5 м × 1 м;
  • 1 м × 1 м;
  • 1 м × 1,2 м;
  • 1 м × 2 м.

Габариты плит пенопласта также смогут обеспечить безотходный процесс. Для этого необходимо предварительно измерить размеры стен, которые планируется утеплять, а затем выполнить расчёт размеров плит. Выбрать пенопласт необходимо выбрать таких размеров, чтобы как можно меньше выполнять разрезы материала. После этого можно определиться и с количеством. Подробнее о расчете толщины материала смотрите в этом видео:

В связи с повышенной пожароопасностью материала, после выполнения работ по его монтажу, необходимо защитить его от возможности постороннего воздействия и выполнить отделку стен.

Кроме пенополистирола понадобятся клей для его монтажа, крепёжные элементы, армирующая сетка и прочее. Всё это также следует рассчитать заранее. Не старайтесь удешевить затраты посредством исключения какого-либо процесса. Это приведёт к нежелаемым результатам по теплоизоляции.

Статьи по теме:

moyastena.ru

утеплитель 50 мм, виды пенополистирола, размеры и характеристики, толщина и марки

Чем плотность у пенопласта выше, тем лучше его теплоизоляционные свойства Пенопласт зарекомендовал себя как отличный утеплитель. Его широко используют как для наружного, так и для внутреннего утепления зданий разного назначения. Здесь важно не только правильно определить размеры пенополистирола, но и ориентироваться в характеристиках материала. Одной из них является плотность.

Основные свойства пенопласта, как утеплителя дома

Пенопласт является вспененным веществом. Внутри материал заполненный воздухом, поэтому его вес небольшой. Основный компонент пенопласта обладает большей плотностью, чем сам пенополистирол. Основная часть материала состоит из неподвижного воздуха. А это лучший теплоизолятор.

Плюсы пенопласта:

  1. Экологически чистый материал. Это подтверждают государственные стандарты и производители. Для здоровья это абсолютно безопасный материал.
  2. Долговечный. Может прослужить неограниченный срок, так как устойчив к действию микроорганизмов и гниению.
  3. Имеет небольшую теплопроводность листа. Отличные пароизоляционные свойства.
  4. Устойчив к воздействию огня. При повышении температуры в помещении пенопласт не теряет своих свойств. При этом в составе качественного продукта имеется антипирен, который приводит в затуханию.
  5. Небольшой вес.
  6. Доступная цена.

Но у данного материала есть и недостатки. К ним относится неустойчивость к механическим воздействиям. Приходится прибегать к дополнительным мерам защиты при утеплении дома пенопластом.

Пенопласт уязвим при действии определенных химикатов: нитрокрасок и лакокрасочных веществ с аналогичным составом.

Пенопласт отлично подходит для утепления мансарды

Пенопласт не пропускает воздух. Также такой материал является лакомством для грызунов. Придется покрыть пенопласт толстым слоем штукатурки.

Разнообразие видов пенополистирола в зависимости от плотности

Классифицируется пенополистирол в зависимости от плотности материала. Также подразделяют пенопласт за методиками изготовления. Цену утеплителя определяет плотность и класс изделия.

Всего выделяют 2 класса пенополистирола: беспрессовый и прессовый.

Первый класс относится к беспрессованному. Изготовляется материал с помощью спекания гранул при воздействии высоких температур. Такой вариант подходит при упаковке техники. Второй класс – прессовый. Обладает большей прочностью, так как гранулы скрепляются более крепким соединением. Беспрессовый вариант делится на виды в зависимости от плотности.

Марки и разновидности пенополистирола в зависимости от плотности:

  1. ПСБ-С-15. Отличается маленькой плотностью. Материалом утепляют вагоны и мансарды.
  2. ПСБ-С-25. Подходящая плотность для утепления любых поверзностей.
  3. ПСБ-С-35. Высокая плотность и качественность. Отличная основа для стоянок, бассейнов и прочих фундаментов.
  4. ПСБ-С-50. Высокая плотность, благодаря которой можно совершать межэтажные перекрытия и строительство дорог.

Каждая плотность имеет свои рекомендации к установке. В зависимости от цели утепления выбирают и вид пенопласта. Для внутреннего утепления дома лучше всего применять плотность 25.

Характеристика пенопласта с плотностью 50 мм

Толщина 50 мм считается универсальной для всех поверхностей и типов зданий. Это материал высокой плотности для защиты стен от промерзания. Так можно утеплить как жилой дом, так и производственное строение.

Характеристика пенопласта толщиной 50 мм:

  • Низкая теплопроводность, так как материал состоит из воздуха;
  • Материал прослужит не менее 40 лет;
  • Стойкий к химическим реагентам;
  • Устойчивость к воздействию огня;
  • Просто транспортируется и устанавливается;
  • Высокая адгезия.

Среди преимуществ пенопласта толщиной 50 мм стоит отметить эффективность и небольшую цену

Тем более пенопласт имеет отличные теплоизоляционные свойства. А доступная цена позволяет приобрести материал каждому. Но сама цена пенополистирола зависит от его толщины и плотности.

Расчет плотности пенопласта для утепления

Важно правильно рассчитать толщину утеплителя. Это необходимая мера, особенно в панельном доме. Здесь дело не только в превышении утепления, но и в возможном сдвиге точки росы.

Размещение точки росы при утеплении:

  1. Внутреннее размещение. В этом случае точка росы располагается ближе к внутреннему покрытию или на нем. Так весь конденсат осядет на стене, испортив отделку.
  2. Внешнее размещение. Пар осядет на внешней стороны стены. Так как эта часть контактирует с воздухом и улицей, то конденсат быстро испариться, не причинив вред стене.
  3. Точка росы находится в толще пенопласта. Считается наиболее оптимальный вариантом. Пенопласт характеризуется пароизоляцией, конденсат не сможет проникнуть внутрь утеплителя. Он просто не создается.
  4. Размещение точки посередине стены. При похолодании точка начнет смещаться к внутренней стороне, начнется замерзание пара, стена начнет рушиться.

Потребуется подобрать такую толщину пенопласта, когда точка ромы будет размещаться за пределами стены. Для этого потребуется собрать исходные данные. Они включают толщину самой стены, ее теплопроводность и самого пенопласта, а также минимальное сопротивление при теплоотдаче.

Минимальное сопротивление зависит от региона проживания.

Когда все данные готовы, преступаем к расчетам. Определяем минимальное сопротивление стены. Для этого ее толщину делим на теплопроводность. Далее рассчитываем разницу между минимальным и фактическим сопротивлением. Полученное число умножаем на теплопроводность пенопласта и получаем необходимую толщину материала.

Выбор утеплителя пенопласта: основные критерии

Для утепления в строительстве используют пенополистирол. Могут использовать и другие виды материала. Но именно данный вариант считается наиболее подходящим для этих целей. Пенополистирол создается путем расплавления полистирова и добавления пенообразователей. Полученное вещество спекается и полимеризуется. Именно так получается исходный материал.

Свойства материала могут отличаться в зависимости от технологии производства. Прочность достигается за счет использования метода экструзии, а огнеустойчивость путем добавления антипиренов.

Согласно санитарным правилам утеплитель должен быть смонтирован снаружи. Лучше сразу приобретать пенополистирол для наружного применения. Но если не вникать в характеристики, то можно купить некачественный материал по рекомендации недобросовестного продавца.

При выборе пенопласта для утепления стен нужно учитывать их толщину

Основные критерии выбора пенопласта:

  1. Учитывают плотность материала. Оптимальный показатель – 25 кг/м3. Но при выборе лучше взять пенопласт большей плотностью – 35 кг/м3.
  2. Горючесть материала. Законом предусмотрено использования только защитных от огня материалов. Лучше выбирать первый и второй класс для закрытых фасадов и только первый для вентилируемых.
  3. Толщина пенопласта полностью зависит от климата и толщины стен.

В сертификате пожарной безопасности можно найти информацию о классе горючести и плотности материала. Толщину придется рассчитать самостоятельно. Для этого используют простые математические манипуляции.

Размеры и плотность пенопласта (видео)

Пенопласт имеет массу преимуществ. Это дешевый, эффективный и удобный в использовании материал. Одной из его важных свойств является плотность. Именно на это стоит опираться при выборе утеплителя. Всего различают 4 марки плотности.

Добавить комментарий

teploclass.ru

Характеристики пенопласта, размеры пенопласта, теплопроводность пенопласта

Какая оптимальная толщина пенопласта для утепления дома?

При выборе пенопласта важно учитывать климатические особенности региона, в котором расположен дом, размеры объекта и материал, из которого он построен. Характеристик у пенопласта две — толщина и плотность, которая непосредственно влияет на коэффициент теплопроводности. Так, оптимальной считается толщина пенопласта для утепления дома 50 миллиметров с плотностью на уровне 25 килограмм на метр кубический. Такие данные обеспечивают эффективную эксплуатацию материала и качественное утепление дома. Однако они не являются нерушимой нормой и варьируются в зависимости от вышеперечисленных факторов.

Какая необходима толщина пенопласта для утепления пола?

При осуществлении работ по повышению энергоэффективности пола важными факторами являются надежность, долговечность и невысокая цена покрытия. Кроме того, для помещений с низкими потолками актуально, чтобы новое покрытие не сильно уменьшало высоту комнаты. Учитывая эти факторы, толщина пенопласта для утепления пола может варьироваться от 50 до 100 миллиметров, а плотность — от 25 до 35 килограмм на метр кубический. Этого вполне достаточно, чтобы обеспечить нужный уровень утепления и прочность пола без больших затрат на строительные материалы. К тому же, высота пола будет изменена довольно незначительно и не серьезно не скажется на высоте помещения.

На какую толщину пенопласт заменяет кирпич?

Точно ответить на этот вопрос можно, лишь получив данные о типе кирпича и толщине кладки стены. Разные виды кирпича могут иметь уровень теплопроводности, отличающийся в разы. Поэтому без этих данных любые расчеты будут сугубо формальными. В целом, высокопористый пенопласт имеет уровень теплопроводности в десять раз ниже, чем обычный полнотелый красный кирпич. То есть, в данном случае умножение толщины пенопласта на этот коэффициент позволяет получить информацию, на какую толщину пенопласт заменяет кирпич. Если, например, взять за основу лист утеплителя толщиной 50 мм, выйдет, что пенопласт компенсирует полметра кирпичной кладки.

Какой обычно размер пенополистирольных плит?

Качественные листы пенопласта выпускаются согласно ГОСТу. Государственный стандарт четко регулирует не только состав материала, но и размер пенополистирольных плит. Поэтому обычно длина листов пенопласта составляет 1000, 1200 и 2000 миллиметров, ширина — 1000 миллиметров, а толщина — 20 до 500 миллиметров с шагом 10. Но это не значит, что производство листов нестандартных размеров невозможно. Плиты пенополистирола любого размера можно заказать, напрямую связавшись с нами и сделав заказ на нашем заводе.

Сколько кирпича заменяет пенопласт?

В свете этого вопроса, пенопласт будет иметь различные свойства в зависимости от того, какой используется кирпич. Если взять за основу лист пенопласта толщиной 5 сантиметров — он заменит до 80 сантиметров красного кирпича, до 100 сантиметров силикатного кирпича, и до 20 сантиметров кремнеземного кирпича (этот кирпич сам по себе является неплохим утеплителем). Более точно ответить на вопрос, сколько кирпича заменяет пенопласт можно, узнав данные о климатических условиях региона, уточнив общую информацию об объекте. Играет роль и плотность используемого пенопласта. Чем она выше — тем соответственно ниже теплопроводность материала. Обобщив эти факторы, можно выполнить точный расчет с помощью специальных формул.

www.styroplast.su

Толщина пенопласта — inkmilk.ru

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Вопросы, возникающие перед началом утепления дома

Уют в вашем доме зависит от тепла — с этим вряд ли кто-нибудь станет спорить. Поэтому работы по теплоизоляции жилья – дело ответственное, требующее серьёзного и обдуманного подхода. Важно и то, какой материал лучше выбрать для утепления дома, и каков будет размер утепляющего слоя, и метод утепления – наружный или внутренний. Каждый из этих нюансов играет важную роль в общей картине и в том, будет ли ваше жильё по-настоящему тёплым и уютным.

В наше время в строительстве всё чаще используются новые пути для реализации архитектурных решений и решения разнообразных задач, в том числе и по обеспечению теплозащиты зданий. При этом приходится обращаться к новым поколениям материалов, которые способны лучше справляться с поставленными требованиями. Одним из таких материалов является пенополистирол (пеноплекс или пенопласт), который используется для утепления стен, как наружного, так и внутреннего.

Пенопласт – это материал белого цвета, состоящий из воздуха и вспененного полистирола. Рассмотрим подробней его свойства:

  • — пенопласт нетоксичен, биологически безвреден и с успехом может применяться даже в качестве упаковки в пищевой отрасли;
  • — пенопласт не поддаётся старению;
  • — пенопласт влагоустойчив и не подвержен образованиям плесени и грибков;
  • — теплоизоляционные свойства пенопласта гораздо выше, чем у других материалов;
  • — пенопласт имеет небольшой вес, что упрощает работы с ним, легко поддаётся многим видам механической обработки, хорошо клеится.

Пенополистирол обладает одним существенным недостатком – он горюч и при его сгорании образовывается большое количество токсичного дыма, опасного для жизни человека. Этот фактор следует обязательно учитывать, если вы решаете использовать этот материал для теплоизоляции жилья.

Важность правильного выбора размера плит пенопласта

Почему так важно верно подобрать, какой именно толщины будет утепляющий слой? Очевидно, что слишком маленькая толщина пенопласта может стать причиной недостаточного утепления и, как следствие, промерзания постройки. «Точка росы» может сместиться внутрь помещения, а это может стать причиной запотевания стен и, как следствие, избыточной влажности в вашем жилище. Существует точка зрения относительно утепления зданий, что «чем толще – тем лучше», однако это не так. Неоправданно завышенный размер утепляющего слоя станет причиной лишних финансовых трат при отсутствии желаемого эффекта. Поэтому в любом случае лучше выбрать оптимальную толщину пеноплекса, учитывая все нюансы вашего жилья и климата вашего региона.

Плюсы правильного расчёта размера слоя пенополистирола для утепления стен.

  • — значительно сокращаются неоправданные финансовые траты на материалы и монтажные работы;
  • — ощутимо экономится тепло в вашем жилье и, как следствие, снижаются расходы на отопление;
  • — сокращается количество отопительных приборов в здании, что тоже ведёт к экономии финансов;
  • — полезная площадь жилья увеличивается, поскольку сокращается конструктивная толщина стен;
  • — повышается температурный комфорт жилья;
  • — повышается экологическая безопасность здания;
  • — вследствие правильного утепления здание становится более долговечным за счёт защиты наружных поверхностей стен от внешних климатических факторов слоем пеноплекса.

Как выбрать толщину пеноплекса для утепления стен

Тепловое сопротивление R – это фактор, от которого зависит размер слоя пеноплекса для теплозащитной отделки здания. Это величина, индивидуальная для каждого региона и зависит от того, насколько суров климат. В наших широтах R = 2,8 (м 2 *К/Вт). Это минимальная величина допустимого теплового сопротивления производственных и жилых строений в нашем климатическом поясе.

Рассчитывая термоизоляцию стен, состоящих из нескольких прослоек, считаем общую величину теплового сопротивления как сумму теплосопротивлений прослоек:

Размер пенопластовой плиты для утепления несложно узнать, поскольку известно, что она равна произведению теплового сопротивления на коэффициент теплопроводности (Вт/м*к) – его можно узнать из таблицы теплопроводностей материалов.

Алгоритм расчёта размера пенополистирола для отделки зданий

Попробуем вычислить размер пеноплексового слоя, который необходим для утепления обычного дома – он возводится, как правило, в два кирпича.

  1. Нам нужно обеспечить общее тепловое сопротивление не меньше 2,8 (м 2 *К/Вт).
  2. Вначале узнаем теплосопротивление самого кирпича без термозащиты.

Ширина стены в два кирпича равна 51 см,

Для кирпича коэффициент теплопроводности равен 0,7 (Вт/м*к),

Следовательно, разделив толщину стены на коэффициент теплопроводности, получаем:

R(к) = 0,51/0,7 = 0,73 (м 2 *К/Вт).

Итак, мы высчитали теплосопротивление самого кирпича без теплозащитного слоя: R(к) = 0,73 (м 2 *К/Вт).

  1. Для того, чтобы обеспечить минимальное требуемое тепловое сопротивление R = 2,8 (м2*К/Вт), нам нужно вычислить размер слоя пеноплекса, необходимую для теплоизоляции здания.

Рассчитываем недостающее тепловое сопротивление – оно равно теплосопротивлению слоя утеплителя. Для этого вычитаем из минимально необходимого теплового сопротивления полученное нами теплосопротивление неутеплённой кирпичной постройки.

R(п) = 2,8 – 0,73 = 2,07 (м 2 *К/Вт)

  1. Пользуясь основной формулой считаем размер термоизолирующего слоя – плит пенополистирола– она равна произведению теплового сопротивления утепляющей прослойки на коэффициент теплопроводности пенополистирола (берём этот показатель из таблицы)

k(п) = 0,035 (Вт/м· 0 C)

Наш расчёт показал, что для наружной теплозащитной отделки здания в два кирпича необходим пеноплекс толщиной 72 мм. Учитывая, что при строительстве стен от 50 до 100 мм предусмотрена воздушная подушка, для термозащиты зданий, построенных в два кирпича используем пенопласт толщиной 70 мм.

Правильный расчёт оптимальной толщины утепляющего слоя лучше скажется не только на комфорте и тепловом балансе вашего жилья, но и на ваших финансах и трудозатратах.

Подробности Опубликовано 12.08.2016 16:10

Выбирая толщину листов пенополистирола которые будут использоваться для утепления здания важно учитывать климатические особенности региона, где оно расположено, габариты здания и материал из которого оно построено.

Эксплуатационных и технологических характеристик, которые непосредственно влияют на качество утепления у пенопласта две – толщина и плотность.

В общем случае оптимальными считаются листы толщиной 50 мм, плотностью 25 кг/м3. Именно такой материала обычно рекомендуют застройщикам или ремонтникам, которые не знают какой толщиной пенопласта утеплять дом. Однако указанная толщина и плотность не являются нерушимой нормой и могут варьироваться в зависимости от конкретных условий указанных выше.

Какую толщину кирпичной кладки заменяет пенополистирол?

Точно ответить на этот вопрос можно лишь имея точные данные о виде кирпича и толщине кладки. Дело в том, что различные виды строительных материалов имеют различный коэффициент теплопроводности. Причем этот показатель может отличаться в разы. Не обладая исходными данными любые расчеты считаются приблизительными.

В общем случае, отвечая на вопрос – какую толщину кирпича заменяет пенопласт, принимается, что высокопористый пенопласт обладает уровнем теплопроводности в 10 раз ниже, чем стандартный полнотелый красный кирпич.

В данном случае, умножение толщины листа на коэффициент теплопроводности позволяет говорить о том, какую толщину кладки заменяет данный лист пенопласта. К примеру, лист толщиной 50 мм компенсирует не менее 0,5 метра стены возведенной из полнотелого красного кирпича.

В рамках данного вопроса, дополнительно можно привести следующие данные. Стандартный лист пенопласта заменяет 1 метр стены построенной из силикатного кирпича и до 0,2 метра кремнеземного кирпича, который сам по себе имеет небольшой коэффициент теплопроводности.

Более точно узнать, сколько кирпича заменяет пенополистирол можно, узнав точные данные о среднегодовых температурах в вашей местности и проектную информацию об утепляемом сооружении.

Какая бывает толщина пенопласта?

Листы пенопласта, поступающие в продажу, изготавливаются в соответствии с ГОСТ 15588-86. Данный стандарт четко регламентирует не только состав и характеристики материала, но и его габаритные размеры.

Как правило, в строительстве используются плиты длиной 1, 1,2 и 2 метра, шириной 1 метр и толщиной от 20 до 500 мм с шагом 10 мм. Толщина листов пенопласта, которые поступают в широкую продажу: 10, 20, 30, 40, 50, 80 и 100 мм. Надо отметить, что выше указаны самые распространенные размеры пенопласта. Если по тем или иным условиям требуется больший или меньший размер, его всегда можно заказать на заводе-изготовителе.

Еще одной важной характеристикой пенопласта считается плотность. Плотность измеряется в кг/м3 и бывает: 15, 25, 35 и 50 кг/м3. Это основные плотности плит, которые можно приобрести в широкой продаже. Соответственно единице измерения – чем выше плотность, тем тверже материал.

Для утепления зданий рекомендуется использовать пенопласт плотностью 25 или 35 кг/м3. Материал меньшей плотности плохо противостоит даже небольшим механическим нагрузкам, а большей плотности ведет к значительному удорожанию работ при всех прочих равных условиях.

С чего же начинать утепление дома?

Учитывая вышесказанное, первым делом требуется определить толщину утепляющего слоя. Обычно застройщики выбирают толщину листа 50 или 100 мм, 25-й или 35-й плотности. Как показывает практика – это самые оптимальные характеристики, которые отлично сохраняют тепло и при этом не сильно нагружают стены.

Кроме того следует учитывать что пенопласт находящийся под постоянным действием солнечных лучей желтеет и портит эстетический вид дома. Поэтому, как только вы закрепили листы на стенах, их поверхность лучше всего защитить. Для этого на листы крепят специальную монтажную сетку, после чего оштукатуривают или шпаклюют.

После качественного утепления существующего здания можно увидеть разницу в сумме оплат за энергоносители. В общем случае, только одним утеплением стен пенопластом, можно добиться их снижения ежемесячных платежей на 20-30% в зависимости от климатических условий.

Случайные материалы:

Строя новый дом, необходимую для утепления толщину пенопласта определяет проектировщик, учитывая конструкционный материал, из которого выполнено здание. Утепление здания в разных его местах, следовательно, требует применения иного вида пенопласта разной толщины. Обратите внимание, чтобы толщина пенопласта, которой вы будете изолировать внешнюю сторону фасада, была больше толщины плит изолирующих фундамент. Лучше всего иллюстрирует это следующая таблица.

Оптимальная толщина пенопласта в зависимости от применения

  • для утепления наружных стен фасадов используется чаще всего пенопласт: 12 см-15 см,
  • для утепления полов (в несколько слоев в совокупности): 10 см-15 см,
  • для утепления наклонной крыши: 15 см-25 см,
  • для утепления плоской кровли: 25 см-30 см,
  • для утепления потолков: 5 см,
  • для утепления фундаментов и подвалов: 8 см-12 см.

Толщина для утепления стен

В настоящее время оптимальная толщина пенополистирола для фасада 12 см и 15 см. Все чаще используются толщина 18 см и 20 см.

В случае с пассивными и энергоэффективными домами толщина изоляции из пенопласта (в основном с графитом) наружных стен находится в пределах 15 см-25 см. При использовании серого пенопласта, у нас есть возможность снизить толщину тепловой изоляции на несколько сантиметров. Используя серый пенопласт толщиной 12 см достигается такой же результат по тепроводности, как при применении белого пенополистирола толщиной 15 см.

Толщина для утепления пола

При изоляции пола используется более твердый пенопласт, чем тот который используется для изоляции наружных стен. Это связано с нагрузкой на поверхность пола, по которому мы будем ходить, класть предметы или, как в случае полов гаража — парковать автомобиль. Пол должен быть крепким, прочным и теплым одновременно, чтобы повысить комфорт его использования.

В первую очередь пол утепленный пенопластом не пропускает холод, исходящий от грунта, пенопласт в межэтажных перекрытиях укладывается для звукоизоляция от шумов. Используется для этого чаще всего пенопласт с маркировкой EPS 038, EPS 037, EPS 036 или акустический пенопласт, например, STK EPS T.

Следует иметь в виду, что минимальная толщина пенопласта для пола на грунте составляет от 8 см до 10 см. Также используется пенопласт толщиной 12 см, 15 см и 20 см, в несколько слоев.

Толщина для утепления чердака

Перекрытие последнего этажа, чаще всего используется как пол чердака. Это самое холодное место, в которое убегает тепло от нагретых ниже помещений, поэтому необходимо выполнить тщательную теплоизоляцию чердака. Материалом, наиболее часто используемым для выполнения теплоизоляции мансарды является пенопласт толщиной 5 см уложенный в два слоя с перекрытием швов предыдущего слоя. Если чердачное перекрытие выполнено из дерева, то пенопласт укладывается между балками, поддерживающими доски или плиты OSB. Следует иметь в виду, что необходимо оставить несколько сантиметров воздушного пространства между утеплителем из пенополистирола и половыми досками. Если для утепления перекрытия чердака, используется более твердый пенополистирол (EPS 038) или XPS, то из пенополистирола можно уложить финишное покрытие, в качестве слоя основания. Для утепления пола чердака между балками применяются также гранулы из пенополистирола, которые устраняют «так называемый скрип», возникающий в случае изоляции из пенополистирольных плит.

В случае с мансардой, то утеплять пол не имеет смысла, утепляется непосредственно сама кровля, чтобы теплый воздух, поступающий с нижних этажей, обогревал помещения на мансарде.

В случае утепления потолка в неотапливаемом подвале, может быть применен пенопласт следующей толщины:

  • сверху толщина пенополистирола EPS 038, например, 4 см-8 см + слой 5см бетона,
  • снизу пенопласт EPS 040 толщиной 4см-5см + слой клея.

Утепление потолка в подвале

Толщина пенопласта для крыши

Теплоизоляция кровли пенополистиролом потребуется, как в случае строительства скатной крыши, так и плоской. Именно через крышу уходит около 30% тепла, которое поднимается вверх. Теплоизоляция пенополистиролом или XPS производится между стропилами и над стропилами, а также (реже) снизу стропил. Минимальная толщина пенопласта для утепления крыши — это пенопласт 10 см (2х5 см), а оптимальная толщина теплоизоляции из пенополистирола составляет 15 см-20 см. Для утепления крыши лучше всего использовать пенопласт EPS 100-037 или XPS.

Теплоизоляция из пенопласта между стропилами выполняется обычно в том случае, когда кровля крыши уже завершена. При этом необходимо избавиться от всех мостиков холода за счет применения теплоизоляции в два слоя пенополистирола со смещением относительно друг друга.

Теплоизоляция из пенополистирола над стропилами выполняется, как правило, тогда, когда мы строим двускатную крышу. Плиты пенополистирола или XPS должны быть достаточно прочными, чтобы выдерживать вес деревянной конструкции и покрытия крыши. Кроме того, должны обладать малым коэффициентом теплопроводности и впитываемостью влаги. Укладывает их на прикрепленные к стропилам доски.

Толщина для утепления фундамента

На Российском рынке существует множество пенополистирола для теплоизоляции фундаментов. Теплоизоляция фундаментных стен, выполненных с использованием водостойких плит является лучшим вариантом, чем использование стандартных пенополистирольных плит EPS 100-037, и при этом более дешевым, чем применение экструдированного полистирола (XPS). Чаще всего самым продаваемым пенопластом является водонепроницаемый EPS 035 EXPERT компании Austrotherm и EPS 038 HYDRO компании Swisspor с системой многочисленных дренажных канавок. В обоих случаях стандартная толщина для утепления фундамента пенопластом — 10 см 12 см.

Чтобы фасад выглядел эстетично, с применением фасадного пенополистирола 15 см цоколь должен быть на несколько сантиметров тоньше, а значит около 10 см — 12 см. Снятие лицевой стороны цоколя вглубь здания поможет избежать его намокания от дождей.

Если возникает необходимость самостоятельно провести утепление дома, то нужно выбрать материал, который будет недорогим, практичным и легко монтируемым. К таким материалам относится пенопласт. Существует множество его разновидностей, что позволяет применять его во многих сферах строительства. Пенопласт, размеры и плотность которого имеют различные значения, можно использовать как для наружного, так и для внутреннего утепления.

Содержание

  1. Стандартные значения для материала
  2. Пенопласт: размеры, как правильно посчитать?
  3. Отталкивающие и привлекающие факторы

Стандартные значения для материала

У пенопласта очень высокая теплоизоляционная способность, лучше, чем у других строительных материалов. Благодаря своим свойствам, он обеспечивает долгую жизнь зданиям в любых климатических условиях. Сравнивая его по теплопроводности с другими материалами, получаем следующие цифры: пенопласт толщиной 80 миллиметров равноценен 100 мм минеральной ваты, 274 мм дерева, 760 мм кирпичной кладки и 1720 мм бетона. Помимо этого, он дешевый, что позволяет использовать большое количество материала для качественного выполнения работы.

Решив использовать этот утеплитель в качестве отделочного материала, необходимо узнать, какой толщины бывает пенопласт. Его толщина может быть любой, от 20 до 500 миллиметров, но при этом все размеры должны быть кратные 10 миллиметрам. Правда, под заказ могут выпускаться листы кратные 5 миллиметрам (65, 45 мм), но цена на них уже будет более высокой, и преимущество в цене будет потеряно. Размер листа пенопласта также может быть любым, но стандартные размеры пенопласта следующие: длина – 1000, 2000 миллиметров, ширина – 1000, 2000 миллиметров.

Примечание! Для качественного утепления необходимо правильно выбрать все параметры пенопласта.

Еще один важный фактор – это плотность материала. По плотности пенопласт бывает 15, 25 и 35 марки. Плотность играет решающий фактор при выборе толщины, ведь можно купить лист толщиной 50 миллиметров и плотностью 35, который будет аналогичный толщине 100 миллиметров 25 плотности. Однако на более плотные листы цена значительно выше, поэтому отделка обойдется дороже.

Пенопласт: размеры, как правильно посчитать?

Наружное утепление здания – очень ответственное мероприятие, поэтому необходимо правильно провести расчет толщины пенопласта. В характеристике этого материала главным фактором является теплосопротивление (R). Это постоянная величина, которая в каждом регионе имеет свое значение, в зависимости от климата. Так, Курская область относится к температурной зоне №1, теплосопротивление которой равно: R = 2.8 (м 2 х К/Вт).

Если планируется делать несколько слоев, то теплоизоляция считается по следующей формуле: R = R1 + R2 + R3. Толщина же слоя вычисляется так: R = p/к, где р – это толщина слоя в метрах, к – значение теплопроводности. К примеру, высчитаем необходимую толщину материала для стены толщиной в два кирпича. Толщина кирпича равна р = 0.51 (м), а теплопроводность его к = 0.7 (Вт/м*к). Считаем по формуле: R (кирпича) = 0.51/0.7 = 0.73 (м 2 х К/Вт).

Чтобы достичь необходимого показателя в R = 2.8, возьмем материал плотностью 25. Формула следующая: R 25= R – R кирпича, следовательно R25 = 2.8 – 0.73 = 2.07. Далее по специальной таблице вычисляется, какой показатель у значения «к», для плотности 25 – это 0.035 (Вт/м*С), и считаем: Р25 = 2.07 х 0.035 = 0.072 (м). Из вычислений получается, что для стены в два кирпича необходимо применить пенопласт 25 плотности, толщиной 72 миллиметра.

Важно! Данные вычисления очень важны для качественного утепления, поэтому, если нет уверенности, что сможете самостоятельно правильно все подсчитать, то стоит обратиться к специалисту.

Отталкивающие и привлекающие факторы

Теперь нам известно, что утеплитель пенопласт размеры и плотности имеет самые различные, и это существенно влияет на качество теплосопротивления. Но почему стоит выбирать именно этот материал? Рассмотрим все его преимущества и недостатки.

  • Это недорогой вариант, который подходит при необходимости экономичного ремонта;
  • Очень простой в монтаже и обработке;
  • Имеет различную плотность, что делает плотный тонкий пенопласт отличным способом внутреннего утепления.
  • Очень горючий материал; Но пенопласт – не единственный горючий строительный материал, горит практически все.
  • При горении выделяется много токсичных веществ;
  • В этом материале часто заводятся мыши, но от этого можно защищаться металлической сеткой.

Современный стиль в интерьере: олицетворение удобства, практичности и функциональности

Японский стиль в дизайне квартиры и дома

Блеск и великолепие арт-деко в интерьере квартир и домов

Барокко: дворцовый стиль в оформлении современных интерьеров

Стиль хай-тек: от оформления интерьера до строительства жилого дома

inkmilk.ru

минеральная вата, пенополистирол (ППС) или экструдированный пенополистирол (ЭППС) / теплоизоляция / каркасный дом своими руками

Главная Библиотека Что лучше: минеральная вата, пенополистирол (ППС) или экструдированный пенополистирол (ЭППС)?

Публикация.: 25 апреля 2014 года.


До сих пор продолжаются споры, что всё-таки лучше использовать в качестве утеплителя: мин. вату, пенополистирол (ППС) или, достаточно новый материал, — экструдированный пенополистирол? Однозначный ответ дать тяжело, ведь у этих материалов разные физические свойства и есть только одно общее — эти материалы являются теплоизоляционными и имеют практически одинаковый коэффициент теплопроводности. Итак, всё по порядку.

Чем же эти материалы отличаются друг от друга?
       1. Паропроницаемость. У пенополистирола ППС — 0,03, экструдированного пенополистирола ЭППС — 0,013, у мин. ваты — 0,3. Из этого следует, что мин. вата в 10 или 20 раз лучше пропускает водный пар, чем пенополистиролы. В то же время, когда эти теплоизоляторы работают в системе утепления, то общая паропроницаемость ограничивается тем слоем материала, который имеет наименьшую паропроницаемость. И при сравнении паропроницаемости утеплителей она, не существенно, но различается. Применение мин. ваты в полностью полимерных системах очень рискованно, так как полимерный базовый и отделочный слои имеют ничтожную паропроницаемость, и в случаях большого влагопереноса, влага скапливается в минераловатном слое и приводит к порче системы. Даже при незначительном увлажнении минеральной ваты, её теплоизолирующие свойства сильно снижаются. Чтобы этого не происходило, приходится делать хорошую пароизоляцию из дома наружу с увеличением паропроницаемости в сторону улицы. Пенополистирол в этом случае сам является паровой мембраной и практически не пропускает влагу, которая сможет пройти через базовый отделочный слой изнутри помещения и неплотности утепления. При этом влага в нём не накапливается, а через неплотности выводиться в сторону улицы.
       2. Горючесть. В этом, однозначно, минеральная вата выигрывает. Пенополистирол является горючим материалом, плавится и поддерживает самостоятельное горение, в то время как базальтовая мин. вата — полностью негорючий материал, а некоторые её виды выдерживают температуру до 1000 град. Цельсия. Видео ролик: Сравнение теплоизоляционных материалов Пожароопасность ППС и мин. ваты. испытание, видео на Youtube.
       3. Стоимость. В зависимости от плотности и производителя мин. вата и пенополистирол будут, примерно, в одной ценовой категории, ЭППС немного дороже.
       4. Удобство при монтаже. ППС и экструдированный ППС более упругие и стойкие к механическим воздействиям материалы, поэтому их удобно резать, шлифовать, но тяжело состыковать без клея или монтажной пены, чтобы не было стыка (мостика холода). Мин. вата только в матах может быть упругой и сохранять механическую стойкость в стойках каркаса и на фасадах, но при стыковке листов между собой, практически, не имеет стыка. Сейчас есть в продаже ЭППС с Z пазом (ступенькой по бокам листов), чтобы исключить мостики холода.
       5. Экструдированный пенополистирол. Экструдированный пенополистирол на фоне пенополистирола (пенопласта) и мин. ваты сильно отличается своими свойствами и эксклюзивными вариантами использования. Этот материал имеет равномерную ячеистую структуру. Он применяется при устройстве теплоизоляции стен в грунте, фундаментов, полов, а также при строительстве дорог и всевозможных инженерных сооружений, находя применение как в индивидуальном строительстве, так и в промышленном. Материал обладает уникальными техническими характеристиками, поскольку ему свойственны наиболее низкие показатели теплопроводности среди аналогичной продукции. Он химически стоек, очень прочен, водонепроницаем, устойчив к появлению плесени и грибков и является более экологически чистым материалом по сравнению с другими утеплителями. Основное его применение, в котором нет ему равных, — это утепление фундаментов и всевозможных инженерных сооружений с непосредственным контактом экструдированного пенополистирола с грунтом на протяжении многих десятилетий, без ухудшения его потребительских свойств.
       6. Теплопроводность. Этот вопрос самый интересный, с учётом того, что производители мин. ваты и пенопласта дают почти одинаковые данные по теплопроводности.
Использовав в системах утепления домов эти два материала, мы сделали вывод, что пенопласт является лучшим материалом для утепления, чем мин. вата. Единственная мин. вата, которая показывает одинаковую теплопроводность с пенопластом, — так это вата базальтовых пород в плитах очень высокой плотности. А вата, которая поставляется в поджатом состоянии и после распаковки восстанавливает свою распушенную структуру, является недостаточно эффективным утеплителем. И вот почему. ППС и Мин. вата, вроде, имеют одно общее: они в своей структуре содержат независимые объемы воздуха, которые не дают теплому воздуху с одной стороны утеплителя смешиваться с более холодным воздухом с другой стороны. И в нашем случае не дают охлаждать или нагревать помещения. И с этим любой, даже самый дешёвый, ППС справляется лучше, так как имеет полностью закрытую структуру. В отличие от мин. ваты, которая на всю свою толщину не имеет закрытой структуры. А это ведёт к конвекции (движению воздуха) — переносу тепла в самом утеплителе от его тёплой стороны в холодную, согласно законам физики, что приводит к более быстрому выхолаживанию объекта. Не зря все производители холодильников и водонагревателей используют как утеплитель именно ЭППС или ППС, а не мин. вату. При совместном использовании этих двух материалов, накладываются некоторые ограничения на «пирог» утепления: не рекомендуется использовать в каркасном домостроении ЭППС как заключительный слой со стороны улицы. Так как основное правило гласит: «Паропроницаемость материалов должна увеличиваться из помещения в сторону улицы». Но при хорошей пароизоляции со стороны дома, всё-таки можно использовать ППС даже для утепления фасада каркасного дома.
       7. Экологичность. Некоторые утверждают, что пенопласт «газит» (выделяет вредный газ) и разрушается через 10-15 лет. Есть ли правда в этих утверждениях?
Да, действительно, когда пенопласт делали раньше в его производстве использовали фреон, а сам пенопласт состоял из стирола. Впоследствии, находясь в системе утепления «газил», что не рекомендовало использовать его в жилых помещениях. В связи с введением жёстких норм на экологичность сначала в Европе, а потом и в России, производители отказались от фреона, и пенопласт стал значительно экологичнее. Хотя и сейчас я не рекомендовал бы использовать его в больших количествах внутри дома без хорошей вентиляции и изоляции его. Снаружи дома — пожалуйста, в любых количествах.
 Что касается разрушения пенопласта или ЭППС. Это заблуждение очень распространено. Под 10-15 годами имеется ввиду то, что пенополистирол начинает терять свои основные потребительские свойства, если он не защищён от различных воздействий, таких как солнце (ультрафиолет), вода и ветер. В системах утепления пенополистирол обычно защищён от намокания и влияния атмосферы декоративным слоем, и излишняя влага с помощью влагопереноса выводится из утеплителя. На данный момент в мире есть объекты, которые эксплуатируются длительное время. К примеру, ваш старый «бабушкин» холодильник. В нём пенопласт за 20-30лет остался таким же как и при производстве. Или, к примеру, дома в Германии уже 35 лет, а промышленные холодильники в России ещё со времён СССР, то есть более 30 лет.

Теплопроводность пенополистирола

Теплопередача:
  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики США, термодинамики, теплопередачи и потока жидкости. Справочник по основам DOE, том 2 из 3.Май 2016.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Эддисон-Уэсли, Ридинг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
  3. У. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. W.С.С. Уильямс. Ядерная физика и физика элементарных частиц. Clarendon Press; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г. Р. Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в эксплуатацию ядерных реакторов, 1988 г.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, том 1 и 2. Январь 1993 г.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. K.О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Льюис, У. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

Кандидатская диссертация, Публикации в статьях, Публикации в публикациях, Публикации в научных исследованиях

Paper Publications — одна из ведущих индийских организаций по публикации исследовательских работ. Это объединение хорошо известных ученых, заслуженных профессоров, профессоров-исследователей, академиков и отраслевых консультантов для самого широкого распространения знаний по всему миру. Наша деятельность — международная публикация статей, организация конференций на международном и национальном уровне, публикация материалов конференций и поддержка исследовательской работы отдельных ученых и коллективов авторов.Мы работаем с авторами, чтобы подготовить публикации, характеризующиеся исключительно высоким качеством исследований. Нашим главным приоритетом является быстрое распространение научных знаний, поэтому все наши международные журналы имеют открытый доступ.

В состав нашего редакционного и консультативного совета входят известные авторы, профессора-исследователи ведущих университетов, выдающиеся академики из Великобритании, Франции, Германии, России, Индии, Малайзии, Соединенных Штатов Америки, Канады, Италии, Греции, Японии, Юга. Корея и Иран и многие другие.Члены нашей редакционной коллегии признательны за огромный оригинальный вклад в исследовательскую работу и получают большие исследовательские гранты от международной организации с высоким статусом. Многие члены редакционной коллегии постоянно работают в научно-исследовательских лабораториях для достижения качества и инноваций в исследованиях.

Все международные журналы бумажных публикаций выбирают процесс двойного слепого рецензирования. Эта процедура обзора принята, в частности, для поддержания высокого качества публикации исследований во всех журналах.В этом случае автор и рецензент незнакомы друг с другом, поэтому автор защищен от предвзятого отношения к решению о рецензировании. Помимо публикации научно-исследовательской работы, обзорной статьи, письма редактору и краткой заметки; Paper Publication также публикует полные или частичные диссертации, магистерские и дипломные проекты и диссертации.

В целом наш журнал посвящен темам, связанным с медицинскими науками, психологией, ветеринарными науками, здравоохранением, социальными науками, экономикой, социологией, науками о жизни, гуманитарными науками, менеджментом, инженерией и технологиями.У нас тоже есть отдельный сегмент — международный журнал, который занимается междисциплинарными и междисциплинарными областями исследований. Мы постоянно стремимся стать первоклассными поставщиками научных знаний. Мы предоставляем международные журналы с полным открытым доступом для распространения качественных исследований, знаний и образования среди человечества. В бумажном издании приветствуется авторский стиль написания рукописи. Автору предоставляется полная свобода без наложения ограничений на размер статьи или количество страниц.

Испытание экструдированного полистирола с помощью теплового расходомера

Рис. 1. Акриловая штукатурка, наносимая на изоляционные плиты из пенополистирола на фасаде многоквартирного дома. 1

Экструдированный полистирол — это конструкционный материал с высокими изоляционными свойствами, обычно устанавливаемый на внешней стороне стен с карнизами или внутри стен фундамента. Таким образом, знание значений теплопроводности экструдированного полистирола важно при определении изоляционного потенциала здания.Его цель — служить механизмом защиты от теплопотерь в зданиях с целью снижения эксплуатационных расходов. Экструдированный пенополистирол часто путают с пенополистиролом. Хотя эти два изоляционных материала схожи в некоторых аспектах, таких как их состав (полимеризованный полистирол), они сильно отличаются. Экструдированный полистирол создается методом экструзии, отсюда и название. Во время этого процесса полистирол выдавливается через фильеру, в результате чего материал расширяется в однородную изоляционную плиту с закрытыми порами (рис. 2).С другой стороны, пенополистирол создается путем помещения небольших шариков пенопласта в форму и применения пара для расширения шариков с образованием изоляционной плиты (рис. 2). В процессе производства пенополистирола между шариками пенопласта образуются пустоты, создавая пути для проникновения влаги.

Рисунок 2 . Микроскопические различия между составом утеплителей из экструдированного (слева) и пенополистирола (справа). 2

Теплопроводность экструдированного полистирола

Thermtest Heat Flow Meter (HFM) — это стационарная система теплопередачи, измеряющая теплопроводность и тепловое сопротивление плоских изоляционных материалов, таких как пенопласт, твердые частицы и текстиль (рис. 3).HFM измеряет теплопроводность в диапазоне от 0,005 до 0,5 Вт / м · К и в диапазоне температур от -20 ° C до 70 ° C в соответствии со стандартом ASTM C518-15 — Стандартный метод испытаний устойчивых свойств теплопередачи. средствами теплового расходомера. Пользователи могут рассчитывать на высокую степень точности (3%) и прецизионности (0,5%) с этим прослеживаемым методом измерения ASTM.

Рис. 3. Измеритель теплового потока Thermtest (слева) и образцы различной толщины для проверки теплопроводности экструдированного полистирола (справа).

В соответствии со стандартом ASTM C518-15, чтобы гарантировать надлежащие характеристики HFM, прибор должен быть откалиброван с использованием материалов, имеющих такую ​​же теплопроводность и толщину, что и оцениваемые материалы. Если калибровочный эталон испытывается на одной толщине, прибор теплового расходомера может быть откалиброван для этой толщины. Однако, если испытания должны проводиться при различных толщинах, отличных от калиброванной, необходимо провести тщательное изучение погрешности HFM при других толщинах.Для этого эксперимента исследователи Thermtest намеревались проверить границы точности HFM путем тестирования нескольких толщин образцов на основе только одной калибровочной толщины.

Для начала калибровочный образец (NIST SRM 1450d — 1 ″) был помещен между двумя параллельными пластинами внутри HFM (рис. 4). Заданный температурный градиент (10–30 ° C) по пластинам был установлен для имитации потери тепла из внутренней среды здания в более холодную внешнюю среду. Затем устанавливали верхнюю пластину так, чтобы она прижималась к образцу до автоматической толщины образца.HFM автоматически определяет толщину образца с помощью четырех цифровых энкодеров, расположенных в каждом углу верхней пластины. Каждый цифровой энкодер измеряет толщину на своем посту, а затем вычисляет среднее значение. Затем верхняя пластина автоматически регулируется до средней высоты, прикладывая усилие примерно 5 фунтов на квадратный дюйм к исследуемому образцу. Этот автоматический толщиномер имеет прецизионную точность ~ 0,1 м. Если испытуемый образец обладает высокой сжимаемостью и известна приблизительная сила сжатия, ручная установка толщины может быть более подходящим вариантом для получения точных и точных результатов теплопроводности.

Рис. 4. Вид изнутри дверцы HFM. Параллельные пластины (красный и синий) создают одномерный тепловой поток через испытуемый образец, моделируя потерю тепла изнутри здания во внешнюю среду.

При постоянных, но различных температурах параллельные пластины устанавливали устойчивый одномерный тепловой поток через испытуемый образец, а термопары, встроенные в каждую пластину, измеряли температуру по обе стороны от калибровочного образца.Преобразователи теплового потока, контактирующие с верхней и нижней пластинами, собирали данные о результирующем тепловом потоке испытуемого образца (рис. 4). Путем соответствующей калибровки преобразователя (ов) теплового потока со стандартами, а также путем измерения температуры пластин и расстояния между пластинами закон теплопроводности Фурье используется для расчета теплопроводности (λ):

После выполнения калибровки, как указано выше, каждую толщину образца экструдированного полистирола испытывали в соответствии с этапами, описанными выше.

Целью этого эксперимента было определение точности Thermtest HFM для проверки теплопроводности экструдированного полистирола различной толщины при 20 ° C на одном калибровочном образце. Показания теплопроводности, полученные в результате испытаний, проведенных на толщинах от 10,1 мм до 40,4 мм, были в пределах значения теплопроводности контрольного испытания 25,2 мм (менее 3%) (Рисунок 5). Достигнутые результаты коррелируют с результатами, полученными в эксперименте, проведенном Аль-Аджланом в 2006 году, а также с данными, предоставленными производителем.

Рисунок 5. Значения теплопроводности и термического сопротивления экструдированного полистирола различной толщины, калиброванные по одному слою NIST SRM 1450d и полученные при средней температуре 20 ° C с использованием Thermtest HFM.

Al-Ajlan (2006) сообщает, что производитель обеспечил теплопроводность пенополистирола 0,034 Вт / мК. Эта теплопроводность немного выше, чем предусмотренная производителем теплопроводность экструдированного полистирола (0.032). Хотя экструдированный полистирол имеет более низкую теплопроводность, что означает, что он с большей вероятностью защищает вашу внутреннюю среду от нежелательных изменений температуры, он имеет значительно более высокую стоимость, чем пенополистирол. При выборе подходящей изоляционной плиты из пенопласта для ваших строительных нужд необходимо принять во внимание особую осторожность.

Thermtest HFM — это быстрый, надежный и гибкий метод проверки теплопроводности твердых тел, пенопласта и текстиля. Хотя это исследование не предназначено для использования испытаний образцов различной толщины с использованием одной калибровочной толщины, это исследование доказывает способность HFM проверять теплопроводность образцов с небольшими вариациями толщины по сравнению с калибровочным образцом.

Численное и экспериментальное исследование изменения теплопроводности пенополистирола при различных температурах и плотностях

Определение теплопроводности изоляционных материалов в зависимости от того, какие параметры в области применения, а также в процессе производства, очень важно. В этом направлении следует определить параметры, влияющие на теплопроводность, чтобы повысить эффективность изоляционных материалов. Также фактом является то, что блоки из пенополистирола имеют разную теплопроводность при одинаковом значении плотности в зависимости от производственного процесса.В этом исследовании экспериментально и численно было определено, что теплопроводность пенополистирола при различной плотности зависит от параметров и изменений температуры. Пенополистирол состоит из блоков плотностью 16, 21 и 25 кг / м 3 и толщиной 20 мм. Измерения теплопроводности проводились на FOX 314 (Laser Comp., США), работающем в соответствии со стандартами ISO 8301 и EN 12667. Измерения проводились для пенополистирольных блоков при средних температурах 10 ° C, 20 ° C, 30 ° C и 40 ° C.Численное исследование состоит из трех этапов: получение электронных микроскопических изображений (SEM) пенополистирольных блоков, моделирование геометрии внутренней структуры с помощью программы CAD и реализация решений с помощью программы ANSYS на основе конечных элементов. Определены результаты экспериментальных и численных исследований, а также параметры, влияющие на теплопроводность. Наконец, считается, что численные методы могут быть использованы для получения предварительного представления о материале EPS при определении теплопроводности путем сравнения результатов экспериментальных и численных исследований.

1. Введение

Рост населения мира и развитие промышленности увеличили потребность в энергии. Эта потребность вызывает потребление энергоресурсов и наносит серьезный ущерб окружающей среде. Энергия должна использоваться эффективно, чтобы уменьшить воздействие на окружающую среду из-за ограниченных ресурсов. Энергия потребляется в различных сферах, таких как промышленность, транспорт, сельское хозяйство, недвижимость и другие секторы. В развитых странах потребление энергии в домах составляет примерно 30% [1, 2]; поэтому снижение энергопотребления в зданиях важно как для экономики, так и для окружающей среды.Утепление, сделанное с целью минимизировать теплопотери в домах, — очень важный вопрос. Сегодня в качестве критериев оценки используются многие характеристики изоляционных материалов, такие как теплопроводность, толщина, пористость, прочность, звукопроницаемость и огнестойкость. Среди этих критериев на первый план выходит теплопроводность — главная характеристика изоляционных материалов.

Теплопроводность изоляционных материалов, используемых для домов, была определена в среднем на уровне 10 ° C в соответствии с европейскими стандартами [3].Однако с учетом климатических условий средний температурный интервал колеблется от 0 ° C до 50 ° C. Исследование теплопроводности изоляционных материалов при различных температурах важно для эффективного использования энергии. В последнее время особую популярность приобрели пенопластовые изоляционные материалы из-за их низкой теплопроводности, и они широко используются, потому что технология производства пенополистирола проста, стоимость производства невысока [4], поры материала закрытые, материал непрочен. водонепроницаемы, и они обладают низкой теплопроводностью из-за содержащегося в них воздуха [5–10].

Теплопроводность материала изменяется в зависимости от определенных микроскопических параметров: величины ячейки, порядка ячеек, свойств теплового излучения и свойств клеящего материала [11]. Кроме того, поведение мономера стирола в его твердой фазе в зависимости от температуры существенно влияет на теплопроводность пенополистирола, а также воздуха в нем [3]. Изменение теплопроводности и механических свойств материалов определялось по плотности и производственным параметрам [12].Экспериментально установлено, что теплопроводность уменьшается с увеличением плотности [13] и увеличивается или уменьшается с изменением критической толщины материала [7, 14]. Таким образом, необходимо изучить взаимосвязь между температурой и плотностью теплопроводности пенополистирола, используемого для изоляции в домах.

Очень важно правильно оценить значение теплопроводности. Измерения удельной теплопроводности были определены крупными исследователями [6, 12].Существует много разных типов изоляционных материалов с разной структурой материала и с разными тепловыми свойствами. Чтобы получить правильные результаты, необходимо определить метод измерения в соответствии со всеми этими критериями. Значение теплопроводности можно определить тремя различными методами: экспериментальным, численным и аналитическим. Конкретный используемый метод зависит от типа материала. В литературе обычно используются экспериментальные методы для определения теплопроводности изоляционных материалов [3, 6, 7, 11, 13, 15], но существует также ограниченное количество фундаментальных исследований, проводимых путем изучения внутренней структуры с использованием численных методов. методы, а также экспериментальные [15–17].

За исключением нескольких исследований, определяющих теплопроводность численно, исследования в литературе обычно проводились экспериментально. В этом исследовании были использованы экспериментальные и численные методы, а затем проведено сравнение для определения теплопроводности пенополистирола. Было детально рассмотрено, верны ли численные методы или нет. При проведении численного исследования были изучены изображения, полученные с помощью сканирующего электронного микроскопа (СЭМ), и исследование было проведено с помощью конечно-элементного анализа на основе программы ANSYS с учетом температурно-зависимого изменения теплопроводности воздуха и полистирольного материала. в пенополистироле.Изменение теплопроводности пенополистирола исследовали при различных плотностях и температурах. Были определены параметры, которые влияют на теплопроводность пенополистирола, и было получено понимание того, что следует делать для производства материалов с более низкой теплопроводностью.

2. Материал и метод

Пенополистирол, использованный для исследований, был произведен компанией TIPOR (Турция) и имел толщину 20 мм и плотность 16, 21 и 25 кг / м. 3 .

Для экспериментального определения теплопроводности материала EPS при средних температурах 10 ° C, 20 ° C, 30 ° C и 40 ° C использовались образцы размером 50 мм. Перед проведением измерений образцы подвергали сушке при 70 ° C в вентилируемой печи для полного удаления влаги. Измерения массы проводились с 24-часовыми интервалами во время процесса сушки, и он продолжался до тех пор, пока разница не стала менее 0,2%. Когда желаемый интервал измерения был достигнут, процесс сушки был завершен и начались процессы измерения теплопроводности.В экспериментальных исследованиях использовался прибор FOX 314 (Laser Comp., США), работающий по стандарту ISO 8301 и измерения по принципу метода горячей пластины [18]. В этом методе количество теплового потока, возникающего в результате разницы температур между горячей и холодной пластинами устройства, измерялось с помощью датчиков, а теплопроводность рассчитывалась с использованием одномерного уравнения теплопередачи Фурье. Для определения теплопроводности образцов было проведено пять независимых измерений.Значение теплопроводности образцов рассчитывалось как среднее из пяти значений измерения.

Применение численных методов, используемых для определения теплопроводности пенополистирола, было проведено с помощью блок-схемы, представленной на рисунке 1. Программа ANSYS 16.1 на основе конечных элементов использовалась для применения численных методов, Программа AutoCAD 2016 использовалась при моделировании геометрии, а программа Matlab 2016 использовалась при анализе изображений.


Образцы, подготовленные для моделирования геометрии, были вырезаны в форме тонкой пластины для получения изображений их внутренней структуры, и они были прикреплены к медной полосе, поверхность которой была покрыта тонким слоем. в устройстве для позолоты. После нанесения покрытия изображения были получены с разным коэффициентом масштабирования для образцов с разной плотностью в сканирующем электронном микроскопе (SEM). Полученные изображения под электронным микроскопом были исследованы, изучена внутренняя структура материала, проведен анализ изображений и создана геометрическая модель.Исследование пикселей на изображении проводилось в соответствии с цветовыми тонами в анализе изображения во время геометрического моделирования, и пределы воздуха и полистирола, образующего пенополистирол, стали более понятными. Геометрическое моделирование проводилось в программе AutoCAD 2016 с использованием изображений, полученных в результате анализа изображений. Были сделаны некоторые исключения, чтобы минимизировать ошибки в формировании геометрии, и изменения произошли в ограниченных наборах.Таким образом, было сформировано множество моделей и проведено исследование модели, удобной для изучения.

Перенос моделей, геометрия которых формировалась программой ANSYS, производился для формирования сетевых структур и необходимых граничных условий. Треугольные элементы использовались для областей, образованных воздухом, который формировал поры, и полистирольными материалами из пор, а растворы наносили в узловую точку в соответствующих количествах для достоверности результатов.Во время процесса решения необходимые граничные условия были определены для правой и левой стенок сформированной модели относительно достижения средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C, как показано на рисунке 2. Для верхней и нижней стенок были заданы граничные условия изоляции, реализованы одномерные решения. Транспорт и теплопередача незначительны, если диаметр ячейки примерно на 4 мм меньше [8]. В результате пренебрежение теплопередачей, поскольку она намного ниже при естественном переносе, не было ошибочным принятием с точки зрения правильности результатов.


Граничные условия следующие:

Температура и изменяющаяся ситуация были приняты во внимание при определении свойств материалов для компонентов, образующих пенополистирол, необходимых во время численных решений. Свойства материала для воздуха и полистирола, образующего пенополистирол, приведены в таблицах 1 и 2.

9015 9015 9015 9015 9014 9015 9015 9014 9015 9014 9014 9015 9014 9014 9015 9014 9014 9014 90.02551 9014 9015 9015 9015 9014 9015 9014 9014 9015 1,109

Температура (К) Плотность (кг / м 3 ) Удельная тепло (Дж / кг.K) Теплопроводность (Вт / мК)

278 1,269 1006 0,02401
283 1,225 1007 0,02476
293 1,204 1007 0,02514
298 1,184 1007
303 1,164 1007 0,02588
308 1,145 1007 0,02625
1007 0,02699

5 изменение теплопроводности с плотностью показано на рисунке 11.


4. Выводы

Знание того, какие факторы изменяют значение теплопроводности, является очень важным вопросом, важным параметром для материалов, используемых для уменьшения потерь энергии. В результате исследований известно, что значение теплопроводности изменяется в зависимости от распределения, размера и соотношения пор для материалов с пористой структурой, а исследований пенополистирола (EPS) недостаточно. Все данные, полученные или проанализированные в ходе этого исследования, включены в эту опубликованную статью.

На изображениях внутренней структуры пенополистирола с различными значениями плотности было определено, что компоненты материала состоят из полистирола и большого количества воздуха. Как упоминалось в литературе, если пористость исследуется на макроуровне, степень пористости составляет около 4-10%, а микропористость, как известно, составляет от 97 до 99% [17]. Причина различных значений плотности пенополистирола связана с количеством содержащихся в нем пор.

Причина, по которой при исследовании пенополистирола возникают разные значения плотности, связана с количеством содержащихся в нем пор.Было обнаружено, что количество пор уменьшается с увеличением значения плотности. Кроме того, тот факт, что диаметр пор ячеек уменьшается с увеличением плотности, был подтвержден изображениями, полученными с помощью электронного микроскопа. Из результатов видно, что значение теплопроводности экспериментально уменьшается в результате увеличения плотности. Здесь ожидается, что из-за увеличения плотности количество пор уменьшается, а за счет этого увеличивается и значение теплопроводности.Можно сделать вывод, что причина того, что существует контраст между материалами из пенополистирола, заключается в том, что передача тепла осуществляется только с теплопроводностью между двумя одинаковыми твердыми поверхностями; плотность увеличивается, потому что перенос, происходящий в твердом материале и пограничных слоях воздуха, и скорость воздуха находятся на очень низком уровне, а теплопередача с конвекцией находится на пренебрежимо низком уровне в результате уменьшения диаметров ячеистых пор с увеличением по плотности.

При сравнении результатов, полученных с помощью экспериментальных и численных исследований, было определено, что они совпадают между значениями 1% и 5%.Причины этой ошибки связаны с двумерными структурами численного исследования, исключениями, сделанными во время моделирования, и определенными характеристиками материалов компонентов.

В литературе видно, что теплопроводность пенополистиролов одинаковой толщины и разной плотности различна [3, 6, 7]. Когда были исследованы внутренние структуры различных образцов с разной плотностью, было решено, что причина, по которой они имеют разную теплопроводность, может быть связана с диаметром пор ячеек [14].Было определено, что значение теплопроводности для пенополистирола зависит от размеров ячеистых пор материала, изменения температурных и тепловых свойств компонентов и массива пор, и для этого можно использовать численные методы. получить предварительное представление при определении теплопроводности.

Доступность данных

Экспериментальные данные, использованные для подтверждения выводов этого исследования, включены в статью. Числовые данные, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Эта работа была поддержана Отделом координации научно-исследовательских проектов Университета Кырыккале (грант №: 2016/114).

(PDF) Теплоизоляционные свойства пенополистирола как строительных и изоляционных материалов

4. РЕЗУЛЬТАТЫ

При определении значений теплопроводности строительных материалов, которые будут

использоваться для теплоизоляции здания, зная физические свойства материалов (конструкции,

прочность на кручение и т. Д.) И использование соответствующих методов позволит получить более

правильных результатов.Определение коэффициентов теплопроводности после этапа производства строительных материалов

заставит производителя производить высококачественные материалы, а также

будет удовлетворять соответствующие экономические условия за счет уменьшения толщины изоляционных материалов

, используемых в зданиях.

Определено при испытаниях. Для изделий из пенополистирола коэффициент теплопроводности

изменяется обратно пропорционально плотности. Таким образом, можно сделать вывод, что уменьшение коэффициента теплопроводности

обеспечивается увеличением количества зерен EPS в единице объема

,

, приводит к уменьшению объема пустот между зернами, а также приводит к увеличению количества пор в зернах

EPS.Однако это снижение коэффициента теплопроводности действительно до

оптимального значения из-за того, что уменьшение общего количества пустот в EPS

приведет к увеличению плотности, таким образом, значение коэффициента теплопроводности может увеличиться. .

В литературе и стандартах приводится только одно значение для коэффициента теплопроводности

пенополистирола, и предлагается любой метод изменения этого значения в зависимости от веса единицы.

Будет более целесообразно изменить значение коэффициента теплопроводности, например, способ

, указанный в PrEn 12524, в соответствии с количеством образцов, чтобы разработать новые

и более качественные материалы, используя результаты, полученные в ходе экспериментов, с использованием рассчитанного значения

умножив значение коэффициента теплопроводности на коэффициент безопасности.

ССЫЛКИ

1. Брайант, С., Люм, Э., 1997. Система Брайанта Уоллинга. Concrete ’97 для 18-й конференции, проводимой раз в два года,

Future, Конференц-центр Аделаиды, 641-649.

2. Алдер, Г., 1999. Вызов 21 века. Компьютерная графика (ACM), 33 (3), 19-22.

3. Эдремит А., 1997. Проведение экономического анализа изоляционных материалов с помощью

определения физических свойств; Магистерская работа, Технический университет Йылдыз

Стамбул, стр. 114, Турция. (На турецком языке)

4. Манселл, В. К., 1995. Стенные конструкции, оставшиеся на месте, революционизируют дом

Строительство. Concrete Construction, The Aberdeen Group, 12 стр., США.

5. Фиш, Х., июль 2002 г. Пластмассы — инновационный материал в строительстве и

строительство, EUROCHEM — конференция 2002 / TOULOSUE

(http://www.apme.org). 30 апреля 2003 г.

6. Линч, Г., 1999. Combat Cold. Компьютерная графика (ACM), 33 (3), 24-25.

7. Шрив Н., Бринк А. Дж. (Перевод на турецкий язык Чаталташ И. А.), 1985. Chemical

Process Industries, p. 350, Стамбул, Турция.

8. Общество производителей полистирола, 2003.(http://www.pud.org.tr). 30 апреля

2003, Стамбул, Турция. (На турецком языке)

9. Йылмаз, К., Колип, А., Касап, Х., 1997. Несущий полистирол с превосходной изоляцией

Панели, помещенные в стальную сетку, Симпозиум по изоляции’97, с. 75-82, Элязыг, Турция.

(на турецком языке)

Сравнение пенопластовой изоляции — KPS Global®

Для понимания различных видов пенопластовой изоляции и их правильного применения требуется PHD! Ниже приводится разбивка двух основных типов изоляционной пены, используемых в нашей отрасли: полиуретан и экструдированный полистирол (XPS), а также подробная информация об их тепловых характеристиках с течением времени.

KPS Global® использует изоляцию из пенополиуретана с закрытыми порами в своих панелях. Полиуретановая изоляция образует легкую структурную амальгамированную панель. Объединение означает объединение или объединение в одну структуру, поэтому это идеальное решение для строительных конструкций, поскольку пена обладает адгезионными свойствами, которые связывают металлические оболочки и каркас вместе в процессе отверждения.

Многие задаются вопросом, почему полиуретановую изоляцию с закрытыми ячейками рекомендуется использовать в строительных конструкциях холодильных складов.Во-первых, он имеет наивысшее значение R-Value среди всех изоляционных материалов, используемых в отрасли, до R-8,06 на дюйм толщины, и это причина, по которой KPS Global использует этот тип изоляции. Это сопоставимо с изоляционным значением R-5 на дюйм толщины для экструдированного полистирола ближайшего конкурента (XPS). См. Рис. 1.

Во-вторых, он сохраняет эти высокие тепловые характеристики лучше, чем любая другая изоляция. И полиуретан, и пенопласт XPS со временем могут потерять часть своих изоляционных свойств из-за диффузии хладагента с атмосферными газами.Однако недавнее исследование, в котором образцы полиуретановой изоляции были извлечены из списанных холодильных складов, показало, что в течение среднего срока службы 11,78 лет полиуретановая пена потеряла в среднем только 1,55% своих тепловых характеристик в панелях морозильных камер и 5,86% в панелях холодильников. 1 Распространение в панелях KPS Global было ограничено, поскольку полиуретановая изоляция прикреплена к металлической обшивке и каркасу панелей, где атмосферные газы не могут взаимодействовать с изоляцией. 1

Долгосрочное исследование тепловых характеристик экструдированного полистирола, проведенное производителем DOW, показало, что изоляция XPS потеряла в среднем 21% своей теплоизоляции за 12-летний период, снизившись до чистого значения R 3,95 на дюйм. 2 KPS Global морозильные панели со средним значением долговременной теплоизоляции R-7,93. Это означает, что полиуретан KPS Global может обеспечить долгосрочную изоляцию на 100% лучше, чем изоляция из экструдированного полистирола (XPS) (Рисунки 2 и 3).

В-третьих, полиуретановая изоляция связывает все компоненты панели вместе, создавая структурную изолированную панель.Это может устранить необходимость в опорах из конструкционной стали в больших холодильных камерах.

Хотя аэрогелевые и вакуумные панели обеспечивают отличные изоляционные свойства в определенных областях применения, таких как ящики для льда и термосы, их изоляция не предназначена для использования в конструкциях. Полиуретан с закрытыми порами фактически является самой эффективной изоляцией, используемой при строительстве структурных изолированных панелей для холодильных и морозильных камер. Поскольку полиуретан может обеспечивать изоляционные свойства до R-8.06 на дюйм, морозильная панель KPS Global толщиной 5 дюймов может обеспечить теплоизоляцию до R-40. Ниже (рис. 4) приводится сравнение исходной и выдержанной R-значений полиуретановой (используемой KPS Global) изоляции для морозильных и холодильных камер.

Пенополиуретан лучше противостоит физическим воздействиям и нагрузкам, чем полистирол, а также лучше справляется с нагрузкой и терморегулированием. Это также экономичное решение, которое является одной из причин, почему полиуретан является наиболее предпочтительной изоляцией для холодильных складов.

1 Костанца Дж. (2015). Экологическая и экономическая оценка регенерированных полиуретановых панелей: случай вывода списанных из эксплуатации панелей холодильных складов со свалок и переработки в три вида изоляционных строительных материалов.

2 Чау В., Пакет А. (2004). Оценка теплопроводности экструдированного пенополистирола, выдутого с использованием HFC-134a или HCFC-142b. Компания Dow Chemical, Мидленд, Мичиган, 48674

3 BASF.(2010). Технические данные продукта. Elastopor P 19080R Resin / Elastopor P 1001U Изоцианатная система жесткой пены уретана. 1419 Biddle Avenue, Wyandotte, MI 48192

Технический паспорт — изоляция из полиизоцианурата (полиизо) и пенополистирол (EPS)

ISO-HT
® Полиизоциануратная изоляция
Плотность 2,5 фунта / фут³ (40 кг / м³) для более высоких температур

ISO-HT — это жесткая полиизоциануратная изоляция из полиизоцианурата 2,5 фунта / фут3 с закрытыми порами, изоляция из вспененного материала для высоких температур до 350 ° F (177 ° C) с периодическим воздействием до 375 ° F (190 ° C).ISO-HT подходит для сред с постоянной температурой или циклическим нагревом. ISO-HT сертифицирован независимой лабораторией на соответствие строгим требованиям к распространению пламени и образованию дыма класса 1 согласно ASTM E84. ISO-HT полностью соответствует строгим требованиям ASTM C591. Dyplast предлагает ISO-HT в виде связки или листов и блоков с допусками до 1/32 дюйма на поверхности. Наша обширная сеть производителей может предоставить специальные формы для труб, фитингов, сосудов или других механических применений.

Полиизоцианурат демонстрирует наивысшее отношение R-ценности (изоляционного качества) к толщине коммерчески доступной изоляции на единицу стоимости, а ISO-HT обеспечивает более высокие R-значения и меньшее термическое старение. Идеально подходит для применения в широком диапазоне температур до 350 ° F (от криогенных жидкостей до низкотемпературного пара), ISO-HT предлагает превосходные характеристики по сравнению с альтернативами из полистирола, полиуретана, фенола, стекловолокна, аэрогеля и пеностекла. . Если температура не превышает 300 ° F, наша линейка продуктов ISO-C1 также доступна в вариантах 2, 2.Плотность 5, 3, 4 и 6 фунтов / фут³, каждая из которых обеспечивает последовательно улучшенную прочность и другие характеристики для приложений с высокими физическими требованиями.

Линия продуктов ISO

Dyplast производится в виде непрерывной пены. За информацией о размерах булочек обращайтесь в отдел продаж.

ПРИЛОЖЕНИЯ

ISO-HT разработан для использования в диапазоне температур от -297 ° F до + 350 ° F, что делает его идеальным для низкотемпературных паровых систем и жидкостей нефтепереработки, а также уникальных коммерческих и промышленных приложений, которые иногда могут работать при более высоких температурах. до + 375 ° F с перерывами, например, в нефтехимических, фармацевтических системах и системах горячего водоснабжения.

ПОГЛОЩЕНИЕ ВОДЫ

Поглощение воды изоляцией может ухудшить теплоизоляционные свойства. Исключительная стойкость ISO-HT к водопоглощению (0,27%) помогает гарантировать, что в течение длительного времени тепловые характеристики превосходят полистиролы, фенольные пенопласты, стекловолокно и пеностекло, которое, например, имеет водопоглощение <0,2% (по данным производителя), но также имеет значительно более низкую изоляционную ценность.

ПРИМЕЧАНИЕ ДЛЯ СПЕЦИФИКАЦИИ / ИНЖЕНЕРОВ И ПОДРЯДЧИКОВ

Посетите www.dyplast.com для легкодоступной информации о спецификациях в формате CSI, а также паспортов безопасности материалов и другой информации по безопасности. Соответствующие документы можно получить в два клика с нашей домашней страницы.

ХАРАКТЕРИСТИКИ ПОВЕРХНОСТНОГО ГОРЕНИЯ

Международный механический кодекс определяет изоляцию класса 1 как отвечающую требованиям по распространению пламени / дымообразованию 25/450. ISO-HT хорошо работает в этом диапазоне с рейтингом <25/350 (на 4 дюйма). При сравнении характеристик горения поверхности альтернативных продуктов необходимо учитывать установленную систему изоляции в целом, включая спринклерные системы.Например, хорошо продуманная система изоляции ISO-HT может улучшить общие противопожарные / дымовые характеристики полиизоизоляции. С другой стороны, пламя / дымность альтернативной изоляции может быть снижена из-за герметиков или оболочки, часто рекомендуемых поставщиками. Также существует вопрос целостности системы изоляции во время пожара. ISO-HT может обугливаться пламенем, но сохраняет свою целостность и продолжает защищать изолированную систему.

ДОЛГОСРОЧНАЯ СТОИМОСТЬ R

Высокая эффективность теплоизоляции достигается за счет наполнения ячеек газами с низкой теплопроводностью.Вся такая изоляция из жесткого пенопласта (включая полиуретан, экструдированный полистирол и полиизоцианурат), таким образом, со временем теряет небольшую часть своих изоляционных свойств, поскольку воздух вытесняет изоляционные газы. Меньшая, более прочная структура ячеек ISO-HT и наш запатентованный состав ячеистого газа работают вместе, препятствуя переносу газа через границы ячеек, тем самым снижая потерю тепловой эффективности. При температуре 75 ° F средний R-фактор ISO-HT за 15-летний период сопоставим с шестимесячным «выдержанным» R-значением.Более толстая изоляция, пароизоляция и металлические ограничители также ограничивают диффузию газа. Текущие стандарты расчета LTTR в первую очередь применимы к «облицованным» полиизо-картонам и не подходят для шпаклевки ISO-HT.

РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ

ISO-HT разработан для постоянного температурного воздействия до 350 ° F непрерывно и 375 ° F периодически. ISO-HT следует устанавливать на трубу при температуре окружающей среды. Не рекомендуется установка на трубопроводы с высокой температурой или острым паром, так как это вызовет проблемы со стабильностью размеров.ISO-HT может использоваться с соответствующей ASJ или металлической оболочкой. См. Руководство по установке Dyplast.

Таблица 1 Сравнение пены ISO-HT ® с ASTM C591


4 1014 9015 9015 9014 9015 9015 9015 9015 9015

Температура (K) м /кг.К) Теплопроводность (Вт / мК)

240 1071 998 0,1394
260 1014 9015 1051 1140 0,1507
300 1041 1230 0,1558
320 1031 1310 0.1591
340 1021 1405 0,1616
360 1011 1500 0,1629

9011 9011 9011

9011 9011 9011 Результаты экспериментов

Значение теплопроводности высушенного пенополистирола с различными значениями плотности было экспериментально измерено для средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C с использованием метода измерения теплового потока. .Полученные результаты измерений приведены в таблице 3 и на рисунке 3 в зависимости от температуры.

9038 9038
4 0,03578 9014 0,03576 0,0354

Температура (° C) 1. Измерение 2. Измерение 3. Измерение 4. Измерение 5. Измерение
10 0,03333 0,03323 0,03330 0,03330 0.03322
20 0,03467 0,03455 0,03463 0,03461 0,03454
30 0,03591 0,03698 0,03706 0,03703 0,03696

Наблюдалось линейное распределение каждого значения плотности пенополистирола в зависимости от температуры.В результате этого исследования степень падения или увеличения была определена с использованием метода регрессии. Таким образом, остатки, выраженные как функция температуры, представлены в следующих уравнениях. Значение теплопроводности может быть определено с коэффициентом погрешности всего 0,1%, используя балансы (уравнения), полученные с помощью метода регрессии.

3.2. Измерения с помощью SEM

Изображение под электронным микроскопом, приведенное на рисунке 4, было получено из пенополистирола плотностью 25 кг / м 3 в приблизительном соотношении величин, чтобы получить представление о внутренней структуре с точки зрения проведения численных расчетов. исследования.


При изучении рисунка 4 стало понятно, что структура пор не является однородной и имеет две разные структуры пор для пенополистирола. Когда изображение, полученное с помощью электронного микроскопа, было получено при более близком увеличении, в котором структура пор представляет собой неправильную макропору, можно было наблюдать, что оно имеет ячеистые поры, как показано на рисунке 5. Когда изображения, полученные в результате сканирования с помощью электронного микроскопа ( SEM), было обнаружено, что зона, показанная черным цветом, была воздушной текучей средой, а оставшаяся белая зона представляла собой твердый полистирол.


Как известно, диаметр пор на микроуровне у пенополистирола изменяется от 100 до 300 мкм м, а диаметр пор уменьшается с увеличением плотности [8, 17]. Когда была исследована внутренняя структура пенополистирола с различными значениями плотности, было обнаружено, что размеры пор уменьшаются из-за увеличения плотности, как показано в литературе, как показано на рисунке 6. Многие изображения, полученные с помощью электронного микроскопа, были исследованы с 16, 21 и 25 кг / м 3 образцов для пенополистирола, и было определено, что средний диаметр ячеистых пор составляет приблизительно 141 мкм м, 116 мкм м и 95 мкм м соответственно.

В результате исследований был сделан выбор правильной модели, в которой более четкое различие между воздухом и полистиролом было сделано для расчета геометрии внутренней конструкции. Выбранные изображения и изображения, полученные в результате обработки изображений, показаны на рис. 7.

Конструкции геометрической модели были получены с использованием изображений, полученных с электронного микроскопа, которые были переданы в программу ANSYS и для которых были реализованы численные решения. При проведении численных решений предполагалось, что передача тепла происходит только через трансмиссию.Значение теплопроводности было найдено численно, рассматривая его как проблему теплопередачи: определяя одномерный тепловой поток или распределение температуры и используя уравнение теплопередачи Фурье.

Здесь был определен как средний тепловой поток, рассчитанный в программе ANSYS, был определен как разница температур между левой и правой стенками образцов и была определена как длина в направлении теплопередачи.

Решения были сделаны для средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C для смоделированной геометрии.Было определено среднее количество теплового потока, передаваемого в результате решений, и значение эффективной теплопроводности было численно рассчитано для каждого образца и значения температуры с помощью уравнения 3. Данные, полученные с помощью численных решений, можно найти в таблицах 4, 5, а также 6 и рисунки 8, 9 и 10. Данные измерения теплопроводности, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

9015 9015 9015

Средняя температура (° C) Средний тепловой поток (Вт / м 2 ) Длина (м) Разница температур () Эффективное значение теплопроводности ( Вт / м.К)

10 728,569 10 0,03424
20 745,446 10 0,03623
40 800,148 10 0,03761

8
Средний тепловой поток (Вт / м 2 ) Длина (м) Разница температур () Эффективное значение теплопроводности (Вт / м.К)

10 705.730 10 0,03317
20 724.935 724.935 10 0,03496
40 759,697 10 0,03571

9015
9015
Средний тепловой поток (Вт / м 2 ) Длина (м) Разница температур () Эффективное значение теплопроводности (Вт / м.К)

10 669,119 10 0,03145
20 693.253 10 0,03375
40 733.428 10 0,03447

Общие физические свойства 1,2,3 ISO-HT ® / 2,5 ASTM C591 Макс. Или Мин.
Рабочая температура, ° F (° C) (максимум 4 ) 350 (177) 300 (149)
(минимум) -297 (-183) -297 (-183)
12.1 7 Номинальная плотность, D1622, фунт / фут 3 (кг / м 3 ) 2,5 (40) ≥2,5 (40)
12.2 Сопротивление сжатию (прочность), D 1621 фунт / кв. Дюйм (кПа)
Параллельный 41,4 (285) ≥35 (241)
Перпендикуляр (длина) 33 (230)
Перпендикуляр (ширина) 30 (207)
12.3 Кажущаяся теплопроводность, C 177 8
(в возрасте 6 месяцев при 73 ± 4 ° F) BTU . дюйм / час . футов 2 ° F (Вт / м , ° K)
Средняя температура измерения -165 ° C (-165 ° C) 0,084 (0,012) Не указано
Средняя температура измерения -200 ° F (-129 ° C) 0,116 (0,017) ≤0,13 (0,019)
Средняя температура измерения -150 ° F (-101 ° C) 0.137 (0,020) ≤0,15 (0,022)
Средняя температура измерения -100 ° F (-73 ° C) 0,158 (0,023) ≤0,17 (0,025)
Средняя температура измерения -50 ° F (-45 ° C) 0,178 (0,026) ≤0,19 (0,027)
Средняя температура измерения -0 ° F (-17 ° C) 0,188 (0,027) ≤0,19 (0,027)
Средняя температура измерения + 50 ° F (+ 10 ° C) 0.183 (0,026) ≤0,19 (0,027)
Средняя температура измерения + 75 ° F (+ 24 ° C) 0,191 (0,028) ≤0,20 (0,029)
Средняя температура измерения + 150 ° F (+ 66 ° C) 0,229 (0,033) ≤0,24 (0,035)
Средняя температура измерения + 200 ° F (+ 93 ° C) 0,257 (0,037) ≤0,27 (0,039)
12,4 Характеристики горячей поверхности, C411 при
300 ° F (149 ° C) Прогиб, дюймы (мм)
Пройдено @ 0.09 (.22) ≤0,25 (6)
12,5 Водопоглощение, C272, об.% 0,27 ≤1,0
12.6 Паропроницаемость (трансмиссия), E96, допустимая (нг / Па · м) 1,93 (2,8) ≤3,5 (5,1)
12.7 Стабильность размеров 5 , D2126,% линейного изменения
-40 ° F, 14 дней 0.6 ≤1
158 ° F, 97% относительной влажности, 14 дней -1,6 ≤4
212 ° F, 14 дней -0,5 ≤2
12,8 Содержание закрытых ячеек, D6226,% 97 ≥90
СООТВЕТСТВУЕТ ASTM C591-17 ДА ДА

Таблица 2

Следующие свойства НЕ определены для ASTM C591, но часто упоминаются.
Характеристики горения на поверхности 6 (при необходимости), E84
Распространение пламени (при толщине 4 дюйма) ≤25
Плотность дыма (при толщине 4 дюйма) 350
Выщелачиваемый хлорид, C871, частей на миллион 58
Прочность на сдвиг, C273, среднее значение по 3 направлениям в фунтах на кв. Дюйм (кПа) 28 (195)
Модуль сдвига, C273, фунт / кв. Дюйм (кПа) 289 (2000)
Предел прочности при растяжении, D1623, фунт / кв. Дюйм (кПа)
Параллельный 51 (353)
Перпендикуляр 39 (271)
Модуль упругости при растяжении, D1623, фунт / кв. Дюйм (кПа)
Параллельный 2044 (14093)
Перпендикуляр 1481 (10211)
Прочность на изгиб, C203, фунт / кв. Дюйм (кПа)
Параллельный 65 (40)
Перпендикуляр 71 (490)
Модуль упругости при изгибе, C203, фунт / кв. Дюйм (кПа)
Параллельный 1042 (7190)
Перпендикуляр 1172 (8080)
Коэффициент линейного расширения, E228, среднее значение дюйм / дюйм.° F (м / м ° C) 34 x 10 -6 (61 x 10 -6 )
Цвет Тан

УВЕДОМЛЕНИЕ: Не подразумевается освобождение от каких-либо патентов, принадлежащих Dyplast Products или другим лицам. Поскольку условия использования и применимое законодательство могут отличаться от одного места к другому и могут меняться со временем, Заказчик несет ответственность за определение того, подходят ли продукты и информация в этом документе для использования Заказчиком, а также за обеспечение соответствия рабочего места Заказчика и методов утилизации. применимые законы и другие постановления правительства.Dyplast Products не несет никаких обязательств или ответственности за информацию, содержащуюся в этом документе. НЕ ПРЕДОСТАВЛЯЕТСЯ НИКАКИХ ГАРАНТИЙ; ВСЕ ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ КОММЕРЧЕСКОЙ ЦЕННОСТИ ИЛИ ПРИГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ ЯВНО ИСКЛЮЧАЮТСЯ.

ОГРАНИЧЕНИЯ И ОТКАЗ ОТ ГАРАНТИЙ И ОБЯЗАТЕЛЬСТВ
Описанные здесь характеристики, свойства, характеристики материалов и технические характеристики применения основаны на данных, полученных в контролируемых условиях. Информация предоставляется при условии, что лица, получающие ее, сделают собственное определение ее пригодности для своих целей перед использованием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *