Теплоизоляционные свойства пенопласта: Такой страницы не существует • ООО «Стройтеплокомплект» (г. Набережные Челны)

Содержание

Теплопроводность пенопласта, сравнение с Пеноплексом, цена листов разных марок

Эффективность – первое, что мы ищем, выбирая утеплитель. Разнообразные материалы изначально оцениваются именно по этому критерию, и только потом в дело вступают другие характеристики, особенность монтажа и стоимость. Сегодня мы рассмотрим теплопроводность пенопласта как самого доступного по цене и потому востребованного, а также сравним его с иными видами изоляции.

Оглавление:

  1. Что такое теплопроводность?
  2. Характеристики пенопласта разных марок
  3. Сравнение с другими материалами и расценки

Определение

Теплопроводность – величина, обозначающая количество тепла (энергии), проходящего за час сквозь 1 м любого тела при определенной разнице температур с одной и другой его стороны. Она измеряется и рассчитывается для нескольких исходных условий эксплуатации:

  • При 25±5 °С – это стандартный показатель, закрепленный в ГОСТах и СНиП.
  • «А» – так обозначается сухой и нормальный режим влажности в помещениях.
  • «Б» – в эту категорию относят все прочие условия.

Собственно теплопроводность гранул пенопласта, спрессованных в легкую плиту, не так важна сама по себе, как в связке с толщиной утеплителя. Ведь основная цель – добиться оптимального уровня сопротивления всех слоев стены в соответствии с требованиями для конкретного региона. Для получения первоначальных цифр достаточно будет воспользоваться самой простой формулой: R = p÷k.

  • Сопротивление теплопередаче R можно найти в специальных таблицах СНиП 23-02-2003, к примеру, для Москвы принимают 3,16 м·°С/Вт. И если основная стена по своим характеристикам недотягивает до этого значения, разницу должен перекрыть именно утеплитель (минвата или тот же пенопласт).
  • Показатель р – обозначает искомую толщину изолирующего слоя, выраженную в метрах.
  • Коэффициент k – как раз и дает представление о проводимости тел, на которую мы ориентируемся при выборе.

Теплопроводность самого материала проверяют с помощью нагрева одной стороны листа и измерения количества энергии, переданной методом кондукции на противоположную поверхность в единицу времени.

Показатели для разных марок пенополистирола

Из приведенной упрощенной формулы можно заключить, что чем тоньше лист утеплителя, тем меньшей эффективностью он обладает. Но кроме обычных геометрических параметров на конечный результат оказывает влияние и плотность пенопласта, хоть и незначительно – всего в пределах 1-5 тысячных долей. Для сравнения возьмем две близкие по марке плиты:

  • ПСБ-С 25 проводит 0,039 Вт/м·°С.
  • ПСБ-С 35 при большей плотности – 0,037 Вт/м·°С.

А вот с изменением толщины разница становится куда более заметной. К примеру, у самых тонких листов в 40 мм при плотности 25 кг/м3 показатель теплопроводности может составлять 0,136 Вт/м·°С, а 100 мм того же пенополистирола пропускают всего 0,035 Вт/м·°С.

Зависимость нелинейная, что связано с особенностью кондуктивной передачи. Но поскольку коэффициент высчитывается в единицу времени, а плотность материала остается неизменной, разница температур с внешней поверхностью при «продвижении» энергии сквозь плиту становится все меньше. И если толщина пенополистирола оказывается значительной, тепло просто не успевает передаться обратной стороне, что, в общем-то, и требуется от хорошей изоляции.

Сравнение с другими материалами

Средняя теплопроводность ПСБ лежит в пределах 0,037-0,043 Вт/м·°С, на него и будем ориентироваться. Здесь пенопласт в сравнении с минватой из базальтовых волокон, кажется, выигрывает незначительно – у нее примерно те же показатели. Правда, при вдвое большей толщине (95-100 мм против 50 мм у полистирола). Также принято сопоставлять проводимость утеплителей с различными стройматериалами, необходимыми для возведения стен. Хотя это и не слишком корректно, но весьма наглядно:

1. Красный керамический кирпич имеет коэффициент теплопередачи 0,7 Вт/м·°С (в 16-19 раз больше, чем у пенопласта). Проще говоря, чтобы заменить 50 мм утеплителя понадобится кладка толщиной около 80-85 см. Силикатного и вовсе нужно не меньше метра.

2. Массив дерева в сравнении с кирпичом в этом плане получше – здесь всего 0,12 Вт/м·°С, то есть втрое выше, чем у пенополистирола. В зависимости от качества леса и способа возведения стен, эквивалентом ПСБ толщиной 5 см может стать сруб шириной до 23 см.

Куда логичнее сравнивать стиролы не с минватой, кирпичом или деревом, а рассматривать более близкие материалы – пенопласт и Пеноплекс. Оба они относятся к вспененным полистиролам и даже изготавливаются из одних и тех же гранул. Вот только разница в технологии их «склеивания» дает неожиданные результаты. Причина в том, что шарики стирола для производства Пеноплекса с введением порообразователей одновременно обрабатываются давлением и высокой температурой. В итоге пластичная масса приобретает большую однородность и прочность, а пузырьки воздуха равномерно распределяются в теле плиты. Пенопласт же просто обдается паром в форме, как поп-корн, поэтому связи между вспученными гранулами оказываются слабее.

Как следствие, теплопроводность Пеноплекса – экструдированного «родственника» ПСБ – тоже заметно улучшается. Она соответствует показателям 0,028-0,034 Вт/м·°С, то есть 30 мм хватит, чтобы заменить 40 мм пенопласта. Однако сложность производства увеличивает и стоимость ЭППС, так что на экономию рассчитывать не стоит. Кстати, здесь есть один любопытный нюанс: обычно экструдированный пенополистирол немного теряет в эффективности при увеличении плотности. Но при введении в состав Пеноплекса графита эта зависимость практически исчезает.

Впрочем, если вопрос высокой прочности на повестке дня не стоит, и вам нужен просто хороший утеплитель, проще и дешевле действительно купить пенопласт. В сравнении с такими материалами, как минвата, дерево и керамический кирпич, он безусловно хорош. Главное – не использовать его на пожароопасных объектах и всегда стараться выполнять теплоизоляцию снаружи зданий.

Цены на листы пенопласта 1000х1000 мм (рубли):

Толщина листа, ммПСБ-С 15ПСБ-С 25ПСБ-С 35ПСБ-С 50
20376182124
305595123185
4073122164247
5091152205308
70127213264431
80145243328493
100181304409616

Теплопроводность и плотность пенопласта

Оглавление:
  • Как плотность пенопласта влияет на его стоимость?
    • Как изменение теплопроводности пенопласта влияет на его плотность?
  • Какой плотностью использовать пенопласт?
    • Свойства теплоизолятора ПСБ-С-15 и его применение
    • Как применять утеплитель ПСБ-С-25?
    • Как пользоваться пенопластом ПСБ-С-35?

Пенопласт считается наиболее эффективным строительным материалом, используемым для утепления строений внутри и снаружи. Причиной широкой распространенности в строительстве вспененного полистирола или ППС являются отличные звуко- и теплоизоляционные свойства, плотность пенопласта.

Пенопласт это материал для утепления, который обладает хорошими звуко- и теплоизоляционными характеристиками.

Стоимость пенополистирольных плит значительно ниже, чем на другие утеплители. Использование плит из пенополистирола в строительстве сопутствует сокращению эксплуатационных расходов на отопление либо охлаждение коммерческих или жилых помещений в десятки раз.

Как плотность пенопласта влияет на его стоимость?

Производство пенопласта.

Существует несколько точек зрения, связанных с понятием плотности. Единицей измерения данного параметра является килограмм на метр в кубе. Эта величина вычисляется из отношения веса к объему. Нельзя со стопроцентной точностью определить качественные характеристики пенополистирола, связанные с его плотностью. Даже вес утеплителя не влияет на его способность к сохранению тепла.

Задумываясь над вопросом покупки утеплителя, покупатели всегда интересуются его плотностью. На основе этих данных можно судить о прочности материала, его весе и теплопроводности. Значения плотности пенопласта всегда относятся к определенному диапазону.

В процессе производства плит из пенополистирола производитель определяет себестоимость продукции. Исходя из формулы определения плотности, вес утеплителя будет влиять на данную величину. Чем больше вес материала, тем он плотнее, поэтому его стоимость выше. Это связано с тем, что полистирол, как сырье для плит теплоизолятора, играет важную роль. Он составляет около 80% от общей себестоимости готовой продукции.

Как изменение теплопроводности пенопласта влияет на его плотность?

Пенопласт изготавливается из шариков пенополистирола, содержащих воздух.

Любой теплоизоляционный материал содержит воздух, находящийся в порах. Улучшенный показатель теплопроводности зависит от количества атмосферного воздуха, содержащегося в материале. Чем его больше, тем меньше коэффициент теплопроводности. Производство пенопласта осуществляется из шариков пенополистирола, содержащих воздух.

Отсюда можно сделать вывод, что плотность пенополистирола не оказывает влияние на его теплопроводность. Если эта величина изменяется, то изменения теплопроводности происходят в пределах процентных долей. Стопроцентное содержание воздуха в утеплителе связано с его высокой теплосберегающей способностью, так как для воздуха характерен наиболее низкий коэффициент теплопроводности.

За счет низкой теплопроводности утеплителя обеспечивается высокая степень энергосбережения. Если сравнивать пенопласт с кирпичом, то их энергосберегающая способность будет существенно отличаться, поскольку 12 см толщины теплоизолятора соответствует 210 см мощности стены из кирпича или 45-сантиметровой деревянной стены.

Коэффициент теплопроводности пенопласта, выраженный в цифровом значении, принадлежит интервалу 0.

037 Вт/мК 0.043 Вт/мК. Данное значение можно сопоставить с показателем теплопроводности воздуха, равным 0.027 Вт/мК.

Какой плотностью использовать пенопласт?

Схема применения различных марок пенопласта.

Выпускаются следующие основные виды пенополистирола, отличающиеся по своей плотности и другим характеристикам:

  1. ПСБ-С-15, плотность пенопласта до 15 кг/куб.м.
  2. ПСБ-С-25, от 15 кг/куб.м до 25 кг/куб.м.
  3. ПСБ-С-35, от 25 кг/куб.м до 35 кг/куб.м.
  4. ПСБ-С-50, от 35 кг/куб.м до 50 кг/куб.м.

Обозначение марок плит представляет буквенно-цифровой код. Например, ПСБ расшифровывается как беспрессовый полистирол. Цифры указывают на значение верхнего предела плотности. Буква С в обозначении кода ПСБ-С расшифровывается как самозатухающий.

Свойства теплоизолятора ПСБ-С-15 и его применение

Плиты пенополистирола ПСБ-С-15 позволяют создавать ненагружаемую теплоизоляцию. Это связано с отсутствием нагрузок на утеплитель, теплопроводность и плотность которых составляет не больше 15 кг/куб.м.

Характеристики ПСБ-С-15.

Среди пенополистиролов цены на ПСБ-С-15 являются наиболее доступными. Основными свойствами утеплителя марки ПСБ-С-15 выделяют следующие:

  1. Величина прочности на сжатие ПСБ-С-15 составляет 10% деформации >,0.05 МПa.
  2. Значение предела прочности при изгибе >,0.07 МПa.
  3. Теплопроводность марки ПСБ-С-15 составляет не более 0.042 Вт/мК.
  4. Водопоглощение за 24 часа должно быть не боле 3% от общего объема.

Другое неоспоримое достоинство, которым обладает пенополистирол ПСБ-С-15, связано с его низкой деформируемостью, удобной укладкой, экономичностью. Пенопласт ПСБС-15 широко применяют с целью теплоизоляции бытовок, контейнеров, вагонов и иных конструкций, используемых в строительстве.

Как применять утеплитель ПСБ-С-25?

Плотность пенопласта рассчитывается по аналогии с определением плотности кирпича.

Если один куб пенопласта имеет плотность 25, то его масса равняется 25 кг. Прочность на сжатие и изгиб пенопласта зависит от его плотности. Марка пенопласта и его плотность это совершенно разные характеристики. Так, в зависимости от марки пенопласта, например, СПБ-С25 или СПБ-С50, характеристика плотности колеблется в интервале 15-25 или 35-50.

В зависимости от обозначения пенопласта, он применяется в различных строительных сооружениях, что не вызывает ухудшения его качественных характеристик.

Характеристики плит ПСБ-С-25.

Например, пенопласт ПСБ-С-15 можно использовать, чтобы утеплять им фасады домов. Данный тип утеплителя в строительстве практически не используется. Он применяется в конструкциях, прилегающих к сооружениям. Это могут быть веранды или открытые балконы, выполняющие декоративную функцию. С помощью пенопласта данного вида создают фигуры для фасадов, что позволяет:

  • обрамлять окна, углы дома,
  • разделить этажи с помощью карниза.

Пенопласт плотностью 25 используют, чтобы утеплить фасад дома. За стандарт принимают пенопласт, который имеет толщину 5 см. Такой вид утеплителя используется для многих целей. Его толщина изменяется, что зависит от предпочтений заказчика.

Пенопласт наибольшей толщины применяют с целью утепления стен, подверженных влиянию масс атмосферного воздуха. Им можно изолировать стены, что препятствует образованию грибка.

Как пользоваться пенопластом ПСБ-С-35?

Характеристики плит ПСБ-С-35.

С целью идеального выравнивания стен можно изменить толщину пенополистирольной плиты. Злоупотреблять размером толщины материала не следует, поскольку это вызовет определенные трудности с закреплением системы водоотливов на углах строения.

Перед выбором утеплителя необходимой толщины следует посмотреть, какое количество запаса от газовой трубы имеется, поскольку ее нельзя закрывать категорически, так как это нарушит эстетику вида строения.

В этом случае важно правильно определиться с покупкой пенопласта ПСБ-С-35 толщиной 5 см, нежели видом материала плотностью 25 при толщине 10 см. Хотя их цены практически не отличаются.

Утеплителем плотностью 35 можно изолировать фасады строений, откосы окон и дверей. Он имеет цену в два раза больше, чем материал из полистирола плотностью 25. Последним можно утеплять гаражи и нежилые конструкции, если его толщина равна 5 см. При толщине такого утеплителя в 7 см его можно применять при теплоизоляции жилых помещений.

За счет нормального уровня плотности можно использовать теплоизолятор с наименьшей толщиной, что не связано с ухудшением качества утепления. Если теплоизолятор из пенополистирола является более твердым, то с помощью него можно идеально проводить утепление подвальных помещений, стен и фундаментов.

Если пенополистирол хранился долгое время вне помещения, то его структура могла претерпеть изменения из-за атмосферных осадков и солнечного излучения. Плиты становятся желтыми, а их полезные свойства исчезают.

Теплопроводные свойства пенополистиролаСтройкод

Утепление дома – задача со множеством вариантов и способов решения, один из которых – пенополистирол (или же, как его чаще называют в народе, пенопласт). Помимо практичности, небольшого веса, простоты в монтаже и экологичности, этот материал обладает крайне важным свойством для любого жилья – низкая теплопроводность, позволяющая сберечь помещение от холода.

Ключевые факторы высокой теплоизоляции пенопласта

Для начала уясним, что теплопроводность – это передача энергии от одних микрочастиц к другим при их соприкосновении. Чем меньше этот показатель, тем меньше тепла будет проводить через себя материал. Это и называется изоляционным свойством.

Наиболее низкой проводимостью тепловой энергии обладает воздух, что в первую очередь и используется при изготовлении пенопласта. Многочисленные ячейки его пористой структуры наполнены газом (воздухом), который составляет львиные 98% от состава всего материала.

Однако даже с таким преимуществом свойства пенопласта зависят ещё и от целого ряда дополнительных факторов, которые обязательно должны быть учтены при утеплении помещений:

  • Толщина слоя пенополистирола. Всегда можно добиться более качественного уровня теплоизоляции, попросту увеличив её используемые объёмы. Так, проводимость пенопласта толщиной в 500 мм будет гораздо более ниже, чем у аналогичного по плотности, но более тонкого слоя в 100 мм.
  • Влажность. Чем меньше её в материале, тем лучше. Любая жидкость всегда негативно сказывается на теплоизоляционных характеристиках.
  • Средние показатели температуры слоя. Увеличение нагрева также ухудшает теплоизоляционные свойства пенопласта.

В сравнительном познании

Строительный рынок невероятно богат на огромный ассортимент всевозможных утеплителей. В том же числе это касается и многочисленных разновидностей полистирольного пенопласта.

Характеристики каждого из них так или иначе разнятся между собой. К примеру, экструдированный вариант состоит из такого же вещества, что и обычный. Единственное отличие заключается в том, что в процессе изготовления первого применяется иная технология по созданию гранул. Благодаря чему он получается легче своего аналога. При этом экструдированный пенопласт обладает ещё и более лучшей теплоизоляцией.

Однако теплопроводность пенополистирола крайне зависима и от толщины используемых слоёв. Более очевидным образом это заметно в сравнении с иными утеплителями.

К примеру, лист из минеральной ваты толщиной в 100-120 мм вполне можно вытеснить менее габаритным 50-60 мм пенополистирольным вариантом (соотношение 1:2). Эти же 50 мм полностью равноценны 8.5 см кирпичной закладки и 21 см бетонного слоя.

С другой стороны, те же 100 мм «Пеноплекса» покажут ещё более низкую теплопроводность по сравнению с пенопластом. Для равных показателей потребуется соотношение 100 мм первого к 125 мм второго (1:1.25).

Решающий коэффициент теплопроводности

В расчётах этого параметра используется греческий символ λ, размерность которого определяется как Вт/(м*К):

  • Вт – это то количество энергии (Ватт), которое материал способен предавать через себя;
  • м – в метрах измеряется расстояние, на которое тепло проходит через какой-либо материал;
  • К – определённый перепад температур (Кельвины), при котором происходит передача энергии.

К примеру, наивысшими показателями теплопроводности обладают металлы, стекло, камни. Они не способны надолго сохранить энергию, в отличии от воздуха и газов – лучших природных теплоизоляторов. Поэтому пористая структура пенопласта обладает гораздо меньшей проводимостью тепла.



Среди всего множества строительных материалов особенно стоит отметить пенопласт ПСБ-С 15/25/35, пробковую мелочь и пенополиуретан – они заметно выделяются своим низким коэффициентом теплопроводности. Экструдированный пенополистирол в сравнении со своим обычным аналогом также выглядит довольно привлекательно: 0.03 Вт/(м*К) против 0.038.

Подробнее о габаритах приобретаемого пенополистирола

Эффективное применение любой теплоизоляции напрямую связано с правильным подбором размеров материала. За эти вычисления отвечает достаточно простой алгоритм, который без труда способен освоить любой гражданин со школьным аттестатом за плечами.

Общий порядок действий таков:

  1. Узнать общее теплосопротивление в условиях своего региона проживания. Эта величина климата постоянна. Для Юга России, к примеру, она составляет 2,8 кВт/м2. Для Средней полосы это значение равняется 4,2 кВт/м2.
  2. После этого необходимо выяснить значение теплосопротивления самой стены дома. Для этого потребуется знать её толщину p и λ материала, из которого она состоит (значение этого коэффициента для любого материала можно без труда найти в сети Интернет).

Уже на основе этих сведений находим R стены по формуле p/λ:

  1. Вычислить необходимое значение сопротивления для пенополистирола по формуле: R общее — R стены.
  2. Наконец, остаётся лишь узнать необходимую толщину пенопласта. Её находим по формуле p = R изоляции * λ. Обратите внимание, что в качестве λ здесь обозначен расчётный коэффициент теплопроводности материала.

Наглядный пример: резиденту одного из регионов Средней полосы нужно выяснить, какой толщины подобрать слой пенопласта, плотность которого составляет 30 кг/м3. Стена его дома состоит только из силикатного кирпича (утепляется участок длиной в 50 см).

Из всего набора условий выявляем начальные сведения:

  • Общее теплосопротивление в регионе = 4,2 кВт/м2
  • λ пенопласта = 0,047 Вт/(м*К)

Далее вычисляем R стен. Т.к. коэффициент теплопроводности силикатного кирпича составляет 0,7 Вт/(м*К), его значение сопротивления будет следующим:

R стены = 0,5/0,7 = 0,71 кВт/м2

Аналогичную величину рассчитываем и для пенопласта:

R пенополистирола = 4,2 – 0,71 = 3,49 кВт/м2

И уже на основе полученных данных узнаём необходимую для своих нужд толщину изоляционного слоя:

p = 3,49 * 0,047 = 0,16 м

Подобный алгоритм вычислений несомненно пригодится и в любой другой местности. Главное – правильно выяснить начальные данные. Всегда помните, что грамотный подбор пенопласта в необходимых размерах заведомо избавит от лишних материальных и временных затрат.

При этом итоговый результат окажется гораздо более лучше всех ожиданий. Сравните сами: 10 см пенополистирола способны заменить целую кладку в один кирпич (но только при условии 15-17 кг/м3 плотности). Однако листы с ещё более плотные листы дадут возможность обойтись уже без пары рядов камней. Наконец, даже вычисления доказывают, что пара сантиметров пенопласта полностью эквивалентны 50 см кирпичной стены.

Характеристики и свойства пенопласта, особенности утеплителя

Характеристики пенопласта позволяют определить степень его эффективности, как утеплителя, при определенных условиях. Этот материал имеет свои плюсы и минусы, поэтому его используют выборочно. Но такие свойства пенопласта, как теплопроводность, длительный срок службы и сравнительно хорошая паропроницаемость делают его довольно популярным, несмотря на появление более новых аналогов.

Структура и сферы применения

Свои характеристики пенопласт приобретает благодаря особому строению. Это гранулированный материал, в основе которого полистирол. Он содержит до 98% воздуха, тогда как объем плотной структуры не превышает 2%. Применение сухого пара с целью обработки гранул обеспечивает основные свойства: низкую плотность пенопласта и малый вес.

Листы формуются после тщательной просушки основного материала. Такая технология производства придает и другие качества пенопласту: невысокий коэффициент теплопроводности, что делает его популярным утеплителем; низкая степень прочности листа. Последний из факторов может повлиять на срок службы изделия. Применяют утеплитель данного вида в разных областях: строительная отрасль; пищевая промышленность (упаковка), радиоэлектроника, судостроение.

Обзор технических характеристик

Существуют разные марки пенопласта, каждая из которых имеет собственный набор свойств и параметров. На основании этой информации следует делать выбор.

Показатель коэффициента теплопроводности

Замкнутые ячейки представляют структуру пенопласта, благодаря чему утеплитель данного вида приобретает способность задерживать тепло в помещении. Коэффициент теплопроводности составляет: от 0,033 до 0,037 Вт/(м*К).

За счет низкой теплопроводности утеплителя обеспечивается высокая степень энергосбережения.

Эффективным считается утеплитель, значение данного параметра которого составляет не более 0,05 Вт/(м*К). Существуют и более действенные материалы, однако, средние характеристики пенопласта позволяют успешно применять его до сих пор.

Звукоизоляционные качества, защита от ветра

Наилучшим для защиты от посторонних шумов является материал, который имеет следующие технические характеристики: низкую теплопроводность и одновременно с тем способность пропускать воздух. Под эти критерии подходит пористый пенопласт. Это означает, что утеплитель данного вида отлично справляется с задачей по защите объекта от шума.

Причем, чем значительнее толщина листа, тем лучше звукоизоляционные качества материала. Если нужно обеспечить защиту объекта от ветра, то пенопласт успешно решит и эту проблему, так как состоит из множества закрытых ячеек.

Влагопоглощение

Способность утеплителя данного вида поглощать воду довольно низкая, что позволяет считать его негигроскопичным. Показатель влагопоглощения при постоянном контакте с водой на протяжении суток соответствует 1%.

Материал равнодушен к воздействию влаги и практически ее не впитывает.

Это несколько больше, чем у пеноплекса (0,4%), но и меньше, чем у большинства некоторых других аналогов, например, минваты. Благодаря низкой гигроскопичности срок службы пенопласта значительно продлевается, так как снижается риск образования плесени или грибка.

Температурный режим

Рассматриваемый утеплитель не меняет своих свойств при существенном повышении температуры (до 90 градусов). Низкие значения также не оказывают пагубного влияния на материал данного вида, поэтому его задействуют, в частности, при теплоизоляции наружных стен. Но во время укладки с применением клеящего состава рекомендуется соблюдать температурный режим: не ниже +5 и не более +30 градусов.

Влияние внешних факторов

К таковым относят: перепады температур, ветровая нагрузка, дожди, снега и любой механический источник давления. Прочность листа пенопласта невысока под воздействием последнего из рассмотренных факторов.

Благодаря своим теплоизоляционным характеристикам пенопласт получил широкое распространение при утеплении стен, кровли, потолка, балконов.

Это обусловлено малым весом и крупноячеистой структурой. Причем толщина материала практически не меняет ситуацию. Если сравнить его с пеноплексом, данный вариант отличается высокими прочностными характеристиками.

Степень устойчивости к химическим веществам и микроорганизмам

При контакте с рядом веществ свойства пенопласта не меняются, к таковым относятся: соляные растворы, щелочь, кислота, гипс, известь, битум, цементный раствор, некоторые виды лакокрасочных материалов (на основе силиконов и водорастворимые составы). Нужно избегать контакта утеплителя на основе полистирола с такими веществами: растворители, ацетон, скипидар, бензин, керосин, мазут.

Учитывая низкую гигроскопичность и закрытую структуру материала, пенопласт не обеспечивает подходящие условия для размножения вредоносных микроорганизмов.

Пожаробезопасность

Утеплитель относится к быстровоспламеняющимся материалам (категория горючести Г3 и Г4), однако, время его горения при условии устранения источника возгорания не превышает 3 сек.

Если выбрали утеплитель пенопласт, знайте, он плохо противостоит горенью

Будет заблуждением считать такой материал полностью безопасным, но все же его часто используют, что обусловлено выделением меньшего количества энергии при горении, а также самопроизвольным затуханием.

Свойства

Габариты листа, в частности, его толщина, а также плотность являются одними из главных показателей, на основании которых делается выбор материала.

Основные характеристики и свойства утеплителя

Плотность

Данный параметр представляет собой соотношение веса к объему, соответственно, единицы измерения – кг/куб. м. Чем более высокой является плотность пенопласта, тем он будет тяжелее. А вес изделия – один из факторов, формирующих стоимость изделия. Соответственно, чем больше плотность и вес, тем дороже будет стоить утеплитель.

Пенопласт имеет 4 марки плотности: М15, М25, М35, М50. Выше марка — больше плотность, больше плотность — выше теплоизоляция.

Если рассматривать влияние данного параметра на показатель теплопроводности, то прямой связи не наблюдается. Основа пенопласта – воздухонаполненные закрытые ячейки. Повышение плотности может лишь незначительно изменить показатель теплопроводности (на десятые доли) из-за уплотнения гранул. В целом же общая структура материала остается неизменной, а значит, не меняется и его способность удерживать тепло.

Существуют разные марки утеплителя на основе полистирола: с обозначением 15, 25, 35 и 50. Значения соответствуют толщине листа. Дополнительно могут указываться некоторые буквы: А, Н, Ф, Р, Б, С, что определяет способ изготовления или специфические свойства.

Габариты

Стандартные размеры пенопласта:

  • 1,0х1,0 м;
  • 1,0х0,5 м;
  • 2,0х1,0 м.

Толщина утеплителя варьируется в пределах от 10 до 100 мм с определенным шагом: 10 мм; 20 мм; 30 мм; 40 мм; 50 мм и 100 мм. Чем больше значение данного параметра, тем дороже он обойдется. На прочностные характеристики толщина не влияет, если только не рассматривается материал с высокой плотностью.

Плюсы и минусы

Недостатков у листов полистирола немного: низкая прочность на изгиб; разрушение при контакте с некоторыми видами красок и агрессивных составов; недостаточно высокий показатель паропроницаемости, хоть и выше, чем у пеноплекса.

Главные плюсы:

  • Низкая цена;
  • Длительный срок службы;
  • Небольшой вес;
  • Незначительный уровень гигроскопичности;
  • Устойчивость к высокой и низкой температуре;
  • Несложный монтаж и простота обработки;
  • Устойчивость к образованию грибка;
  • Низкий коэффициент теплопроводности.
Плюсы и минусы пенопласта, сравнение с другими утеплителями

Все эти положительные качества обеспечивают технические характеристики утеплителя, а также его свойства. Срок службы рассматриваемого материала хоть и длительный, однако, ниже, чем у аналога – пеноплекса.

По некоторым характеристикам этот утеплитель превосходит другие аналоги, например, минвату. Но есть и существенные недостатки, в частности, неустойчивость к ряду составов, низкая прочность.

Оценка статьи:

Загрузка…

Поделиться с друзьями:

Теплопроводность пенопласта разных марок: какие факторы оказывают влияние

При выборе утеплителя в первую очередь обращают внимание на такую характеристику, как теплопроводность, напрямую зависящую от процентного содержания воздуха в его структуре. Среди доступных покупателям вариантов лидирует пенопласт, так как эта величина для него достигает 98 %. Оставшиеся 2 % — тончайшие стенки пенополистирольных герметичных ячеек, с диаметром от 2 до 8 мм. Такая уникальная особенность строения делает пенопласт превосходным теплоизолятором, выигрывающим по толщине, в сравнении с другими стройматериалами: кирпичом, минватой, штукатуркой.

Оглавление:

  1. От чего зависит величина показателя?
  2. Выбор вида, исходя из области эксплуатации
  3. Значения коэффициентов теплопроводности разных марок

Значение теплопроводности

Эта характеристика представляет собой перенос тепловой энергии от нагретого участка к холодному. В численном выражении количество переданной теплоты определенного слоя материала в единицу времени представлено коэффициентом теплопроводности. Чем ниже его значение, тем выше теплоизоляционные свойства утеплителя, для пенопласта эта величина в среднем составляет 0,033–0,037 Вт/м∙К. Для сравнения: у кирпича — 0,56, у минваты — 0,045, при этом распределение воздуха внутри пенополистирола более равномерное, благодаря уникальной ячеистой структуре. В отличие от волоконных, он сохраняет форму даже после долгой эксплуатации и практически негигроскопичен, что позволяет использовать утеплитель для фасадов и фундаментов (при условии наличия защиты от внешних повреждений). Кроме того, термоизолирующие свойства пенополистирола не зависят от температуры окружающей среды.

Распространенная ошибка — связывание значения теплопроводности пенопласта с такой характеристикой, как плотность. На первый показатель влияют многие факторы:

  • Толщина. Зачастую для улучшения энергосберегающих свойств приходится выбирать более толстую теплоизоляцию.
  • Структура. Пористые (ячеистые) разновидности имеют преимущество перед остальными.
  • Влажность. Пенополистирол выдерживает кратное погружение в воду (ему присуще минимальное водопоглощение), но хранить в сыром месте в течение длительного срока недопустимо.
  • Средняя температура эксплуатации (ее рост приводит к ухудшению характеристики).

Подобрать самый эффективный утеплитель можно, просчитав общее теплосопротивление конструкции. Расчет ведется с учетом климатических условий, требуемых мероприятий по защите от скапливания влаги и целевого назначения строительного объекта.

Сфера применения

Современные виды экструдированного полистирола, в частности — марки с высокой плотностью (ПСБ-С-35, ПСБ-С-50) с минимальной теплопроводностью 0,033 Вт/м∙К, обычно используются внутри помещений: для защиты кровли, стен, подвалов, потолков и перекрытий. Они незаменимы в качестве теплоизоляции в системе «теплый пол» (толщина слоя при этом редко превышает 5 см). Виды со средним значением коэффициента (0,037 Вт/м∙К, например — ПСБ-С-25) стоят дешевле и предназначены для утепления наружных фасадов.

При необходимости толстые плиты пенопласта выбираются в качестве ветрозащиты стен. Изделия марки ПСБ-С-15, с теплопроводностью 0,042 Вт/м∙К, используются в декоративных целях: как прилегающие конструкции для обрамления углов, карнизов, колонн. Толщину слоя можно изменять (материал легко поддается обрезке), но это приводит к трудностям при финишной обработке.

Таблица теплопроводности пенополистирола

Показатель обычных видов зависит от плотности изделий, но разница значений варьируется в пределах процентных долей:

Плотность, кг/м3Коэффициент теплопроводности, Вт/м∙К
100,044
150,038
200,035
250,034
300,033
350,032

Для высококачественного экструдированного пенополистирола с графитовыми добавками (улучшенный вид) величина теплопроводности почти неизменна:

Марка пенополистирола, EPSКоэффициент теплопроводности, Вт/м∙К
500,031–0,032
700,033–0,032
800,031
1000,030–0,033
1200,031
1500,030–0,031
2000,031

Средняя плотность при этом составляет 45 кг/м3. Экструдированные виды выигрывают по толщине, в сравнении с другими утеплителями. Слой в 2 см сохраняет столько же тепла, как минвата в 5 см или кладка из кирпича в 40. Для обычного пенопласта эта величина чуть больше — 3 см.

 

теплоизоляционные свойства, технические характеристики, вреден ли он

Независимо от типа основного строительного материала, любое здание, в котором будут находиться люди, нуждается в дополнительной теплоизоляции. Именно сохранение тепла обеспечивает поддержание комфортного микроклимата в помещении. Конечно, создать оптимальные условия можно и за счет более интенсивного отопления, но в этом случае существенно увеличиваются коммунальные расходы.

Пенопласт как утеплитель в строительстве известен еще с середины прошлого века. Этот материал обладает замечательными теплоизоляционными свойствами, малым весом и легкостью установки.

Базовые параметры

Основой утеплителя является полимерное соединение с названием полистирол. Его производство заключается в предварительном вспенивании гранул полимера и их прессовании при повышенной температуре и давлении. В результате каждое зерно содержит более 95% воздуха, в процессе прессования его оболочка оплавляется и сращивается с соседними гранулами.

При формовании материала подается небольшое давление, обеспечивающее только плотное касание зерен. Именно поэтому в его структуре остается значительное количество воздуха, выполняющего роль теплоизолятора.

Благодаря зернистой структуре пенопласт обладает уникальными свойствами. Каждая гранула замкнута, что обеспечивает полную инертность материала, а наличие газовых полостей обеспечивает прекрасные теплоизоляционные свойства.

Основные свойства материала

Базовые технические характеристики утеплителя на основе вспененного полистирола выглядят следующим образом:

  • малая теплопроводность в пределах 0,036 – 0,042 Вт/мК;
  • способность к поглощению и гашению звуков;
  • химическая инертность;
  • неспособность к биологическому разложению;
  • минимальные термические деформации и устойчивость к низким температурам;
  • низкая проницаемость для воздуха и водяного пара.

Устойчивость к различным воздействиям

Стирольные полимеры обладают устойчивой структурой, поэтому прекрасно переносят воздействие кислот, щелочей, растворителей и других агрессивных сред. Пенопласт не является исключением.

Его химическая инертность обеспечивает долговечность утеплителя вне зависимости от условий эксплуатации.

Не подвержен вспененный полистирол и биологической коррозии. Материал не содержит питательной среды для микроорганизмов, поэтому не поддается гниению и образованию плесени на поверхности.

Недостатки

К основным недостаткам пенопласта можно отнести:

  • высокую горючесть утеплителя;
  • низкую прочность материала;
  • необходимость дополнительной защиты от грызунов.

Несмотря на несъедобность, пенопласт часто подвергается атакам грызунов, использующих толщу утеплителя для создания своих нор и гнезд. Нередко мыши и крысы просто растаскивают материал. Поэтому если не защитить утеплитель, то за пару лет его слой существенно уменьшится.

Кроме того, материал прекрасно поддерживает горение, что существенно снижает безопасность здания.

Пенопласт как утеплитель часто подвергают дополнительной защите, покрывая его сверху специальными штукатурными составами на основе минеральных вяжущих. Такая защита повышает огнестойкость пенопласта и предотвращает его повреждение грызунами.

Влияние на здоровье человека

Часто при выборе утеплителя встает вопрос, насколько он вреден для обитателей дома. Этот полимер не подвержен химической или биологической коррозии, поэтому в течение времени не выделяет вредных веществ.

Несмотря на инертность материала, со временем пенопласт стареет, подвергаясь постепенному разрушению. Даже в этом случае он не вреден для здоровья человека, ведь стирольные полимеры редко разрушаются полностью, распадается только сшивка между отдельными макромолекулами.

При правильной эксплуатации срок годности утеплителя достигает нескольких десятилетий. Его старение начинается только спустя 40 – 50 лет и продолжается достаточно долго.

Единственное негативное влияние пенопласта заключается в его низкой паропроницаемости, поэтому для поддержания нормального микроклимата помещения требуется установка принудительной вентиляции.

Прекрасные технические характеристики пенопласта, безопасность для человека и животных, а также низкая стоимость обеспечили ему высокую популярность в качестве утеплителя.

Сфера применения

Пенопласт как утеплитель широко применяется в строительстве крупных объектов и при реализации небольших частных проектов.

Основными сферами применения материала являются:

  • утепление фундаментов и цокольных этажей;
  • теплоизоляция стен снаружи и изнутри;
  • использование в качестве несъемной опалубки;
  • защита инженерных сетей и хозяйственных блоков.

Основным ограничивающим фактором для применения пенопласта является его низкая прочность. Из-за неплотной структуры этот материал нельзя нагружать, что существенно осложняет финишную отделку слоя утеплителя.

Но оптимальное сочетание технических характеристик, стоимости и базовых свойств материала позволяют пенопласту оставаться одним из самых распространенных теплоизоляторов.

Несъемная опалубка

Многие производители помимо стандартной листовой формы выпуска часто предлагают специальные блоки средней плотности. Такие элементы легко собираются в полую конструкцию, используемую в качестве несъемной опалубки. Чаще всего такая оснастка собирается при заливке фундаментов в частном строительстве.

Применение пенопласта существенно облегчает процесс создания основания дома, ведь сокращаются временные и финансовые издержки на распалубку, изоляцию и утепление бетонной ленты. Прекрасные изоляционные свойства пенопласта обеспечивают эффект термоса, что ускоряет твердение бетона.

Но использование пенопласта в качестве опалубки требует дополнительного укрепления конструкции. Из-за низкой прочности конструкция может легко деформироваться при воздействии толщи бетона.

Для сохранения заданной геометрии полистирольные блоки снаружи усиливаются металлическим каркасом, собранным из поперечных и продольных металлических прутов. Чаще всего для создания остова используется арматура с диаметром 8 – 10 мм.

Утепление фундамента и цоколя

Пенопласт прекрасно подходит для наружного применения, вот почему его часто используют для защиты выступающей части фундамента или стен цокольного этажа.

С учетом низкой проницаемости материала он хорошо сочетается с бетоном или кирпичной кладкой, так же практически непроницаемых для воздуха и влаги. В этом случае подобное свойство пенопласта становится его преимуществом, а не недостатком.

Для защиты бетонной или кирпичной конструкции достаточно слоя утеплителя в 10 см. Благодаря хорошей теплоизоляции такое количество материала способно предотвратить промерзание стены или фундаментной ленты. В результате существенно повышается долговечность конструкции, а также снижаются затраты на поддержание требуемой температуры в технических и жилых помещениях дома.

Теплоизоляция стен и мансарды

Для защиты стен дома от потерь тепла пенопласт лучше всего использовать как наружный утеплитель. Применение материала изнутри возможно, ведь пенопласт не вреден для здоровья человека и животных. Но свойства материала, в особенности низкая проницаемость, усложняет естественную вентиляцию здания. Именно поэтому при использовании утеплителя внутри помещения требуется устройство принудительного проветривания.

Крепление во всех случаях производится на специальные кронштейны или тарельчатые дюбели с широкими полимерными крышками. Такой способ крепежа позволяет надежно зафиксировать панели утеплителя, не повреждая его структуру.

При наружном использовании материал обязательно защищается специальными штукатурными составами: облицовкой или сайдингом. При внутреннем применении защитить материал и укрепить всю конструкцию можно посредством специальной фанеры или гипсокартона.

Утепление крыши, пола и потолка

Благодаря малому весу и достаточной твердости пенопласт прекрасно подходит для защиты мансардных помещений от потерь тепла. Монтаж производится после создания прочного каркаса между стропилами. Фактически утеплитель укладывается небольшими сегментами, крепление которых происходит за счет высокой прочности собранного остова.

Пенопласт прекрасно подходит для защиты пола. Особенно актуален материал при устройстве теплых полов с электрическими греющими элементами. Благодаря сочетанию хороших теплоизоляционных свойств и низкой деформации расширения материал прекрасно изолирует конструкцию, а также хорошо работает под системой теплого пола.

При утеплении потолка материал выполняет дополнительную функцию звукоизоляции. Из-за высокого содержания воздуха в теле пенопласта его слой прекрасно гасит практически все шумы и звуки.

Защита коммуникаций и хозяйственных блоков

Из-за высокой стойкости к биологической коррозии, изменению влажности и внешней температуры пенопласт прекрасно подходит для теплоизоляции систем водоснабжения и канализации.

Применение утеплителя позволяет защитить трубы от промерзания, что обеспечивает бесперебойную работу систем подачи воды и отведения стоков. Кроме того, короб из листов пенопласта позволяет располагать трубы без фиксации, что сокращает возможность формирования напряжений в металле или металлопластике.

Неплохо справляется пенопласт и с защитой хозяйственных блоков, например, насосных станций, компрессоров и другого оборудования. Подойдет этот материал и для сельскохозяйственных нужд, например, защиты пасек, загонов для животных или хранения овощей.

Сравнение пенопласта с другими материалами

Правильно подобрать утеплитель – значит гарантировать положительный результат намеченных работ по теплоизоляции элементов зданий и конструкций. Затем останется лишь выполнить необходимые работы без нарушений технологического процесса. В основе выбора лежит знание всех характеристик, отличительных свойств, особенностей применения каждого утеплителя, и проведение сравнительного анализа на основании этих данных.

Пенополистирол и минеральная базальтовая вата являются основными универсальными материалами в классе строительных теплоизоляторов.

Основные свойства

Теплоизолирующие материалы различаются по типу исходного сырья, механическим свойствам (прочность, способность держать форму), влагостойкости и другим качествам.

  • Теплопроводность. Главная характеристика, которая определяет эффективность утеплителя – коэффициент теплопроводности. Чем ниже этот показатель, тем лучше теплоизолирующие свойства материала. У эффективных пористых и волокнистых утеплителей коэффициент теплопроводности составляет от 0,03 до 0,06 Вт/(м К).
  • Влагопроницаемость. Теплоизоляционные материалы подвергаются воздействию паров влаги, которые всегда присутствуют в воздухе. Волокнистые утеплители (стеклянная и базальтовая вата) со временем впитывают влагу и утрачивают часть своих изолирующих свойств. Поэтому при их укладке необходимо использовать гидро- и пароизоляционные пленки. Пенопластовые и полистирольные плиты обладают практически нулевым влагопоглощением.
  • Толщина и вес материала. Минимальная толщина эффективного слоя зависит от вида утеплителя. Оптимальный слой утеплителя следует определять расчетно, в зависимости от конструктивных особенностей здания. Нужно учитывать, что чем толще слой теплоизоляции, тем выше нагрузка на ограждающие конструкции.
  • Пожаробезопасность. С точки зрения пожаробезопасности самый лучший утеплитель – базальтовая вата. Она не горит и не выделяет токсических веществ при нагревании. Стекловата при высоких температурах плавится. Пенопласт и полистирол относятся к горючим материалам.
  • Экономичность и простота монтажа. К бюджетным утеплителям относятся пенопласт и стекловата. Технологии монтажа всех рулонных и плитных теплоизоляционных материалов достаточно просты и доступны людям с минимальными строительными навыками.

Минеральная вата используется для утепления и звукоизоляции:

  • «Дышащих» фасадов.
  • Каркасных построек.
  • Мансард, чердаков, скатных крыш.
  • Перекрытий и полов по лагам.
  • Разделительных перегородок.

Виды теплоизоляции

К наиболее распространенным утеплителям относятся пенопластовые плиты, экструдированный полистирол, базальтовая и минеральная вата, материалы из вспененного полиэтилена.

  • Пенопласт. К достоинствам этого материала относятся невысокая цена, влагостойкость, небольшой вес. Плиты из пенопласта хорошо держат форму и не усаживаются со временем. Из значимых недостатков можно назвать высокую горючесть и привлекательность для грызунов.
  • Экструдированный пенополистирол (пеноплэкс). Теплопроводность пеноплэкса на треть ниже, чем у пенопластовых плит. Благодаря высокой плотности и жесткости, пенополистирол подходит для заливки в бетонную стяжку в качестве изоляции при укладке теплых полов. Купитьэкструдированный пенопласт можно для внутреннего и наружного утепления кровельных конструкций, несущих стен. Срок его службы — до 40 лет. К недостаткам пеноплэкса относится достаточно высокая цена и горючесть.
  • Базальтовая вата. Этот теплоизолятор полностью безопасен для здоровья человека, хорошо держит форму. Плотные разновидности (жесткие маты) обладают низким влагопоглощением. При качественной гидроизоляции базальтовая вата служит более 50 лет. Однако базальтовая вата очень привлекательна для грызунов – они любят устраивать в ней гнезда.
  • Минеральная вата (стекловата). Недорогой волокнистый утеплитель, который изготавливается из тончайших стеклянных волокон. Подходит для утепления кровельных и стеновых конструкций, полов, настланных по лагам. Стекловата нетоксична и не горюча, но при укладке стеклянные волокна ломаются и образуют мельчайшую пыль, которая может вызывать раздражение слизистых и аллергию.
  • Пенофол, изолон (вспененный полиэтилен с фольгированным покрытием). Этот изолятор выпускается в рулонах и в виде плит (толщина от 2 до 100 мм). Применяется для утепления перекрытий при укладке теплого пола, теплоизоляции стен, кровли. Обладает высокой эластичностью, что дает возможность оклеивать радиусные конструкции. Недостатки – высокая цена и необходимость бережного монтажа (важно сохранить целостность фольги).

Все эти изоляторы химически инертны, не выделяют вредных веществ в процессе эксплуатации. После завершения срока службы они могут быть использованы для вторичной переработки.

Сферы применения пенопласта

Пенопласт, сохраняющий свойства во влажной среде, подойдет для утепления:

  • Торговых точек, беседок, киосков, бань.
  • Эксплуатируемой плоской крыши.
  • Жилых домов, хозяйственных построек, цехов и специальных помещений снаружи.
  • Фундаментов.
  • Полов первого этажа, если в доме нет подвального помещения.
  • Балконов и лоджий.

Сравнение пенополистирола с некоторыми строительными материалами, например, с древесиной, кирпичом, бетоном и другими, является некорректным. Потому, что совершенно разные функции на них возлагаются. Но для демонстрации теплоизоляционных свойств пенопласта можно привести следующую статистику: эффект утепления стены в 2,5 кирпича плитами пенопласта с толщиной 30 мм равносилен увеличению ее толщины кирпичной кладкой – на 64 см; бетонированием – на 1,2 м; обшивкой деревом – на 11,3 см; кладкой из природного камня – на 1,8 м.

Если для работы нужен пенопласт, то обращение к надежному партнеру-производителю – беспроигрышное решение. Не откладывая обращайтесь по телефонам: +375(29)357-90-02 и +375(29)771-90-02.

типов пенополиуретана — чем они отличаются?

Пенополиуретан, несомненно, является прекрасным изоляционным и герметизирующим материалом. На рынке существует множество видов этого продукта, поэтому стоит узнать больше об их свойствах. Узнайте, чем разные виды пенополиуретана отличаются друг от друга и каково их применение.

Пенополиуретаны и их свойства

Полиуретан в основном состоит из двух сырьевых материалов — изоцианата и полиола, получаемых из сырой нефти.После смешивания этих двух жидких компонентов системы, готовых к переработке, и различных вспомогательных материалов, таких как катализаторы, пенообразователи и стабилизаторы, начинается химическая реакция.

История полиуретана насчитывает несколько поколений. Сначала была технология производства жесткого (жесткого) пенопласта, затем гибкого пенопласта и, наконец, полужесткого пенопласта.

Какими свойствами обладает пена PUR? Прежде всего, он демонстрирует хорошие тепловые параметры — он устойчив к широкому диапазону температур (от –200 ° C до + 135 ° C).Средний коэффициент теплопроводности пенополиуретана составляет 0,026 Вт / м2, а наиболее благоприятная кажущаяся плотность после отверждения жесткого пенопласта обычно составляет 35-50 кг / м³.

Самым большим преимуществом пенополиуретана являются его прекрасные теплоизоляционные свойства. Пенополиуретан также устойчив к относительно высоким нагрузкам, а также к грибкам и плесени. Таким образом, это, несомненно, идеальный материал для любых строительных и ремонтных работ, таких как термо- и звукоизоляция, а в случае гибкого пенополиуретана — для монтажа и герметизации.

Пенополиуретан

обеспечивает отличную адгезию как к вертикальным, так и к горизонтальным поверхностям, имеет пористую структуру. Внутри пористых материалов имеются полые полости. Пористость — это свойство, которое говорит нам об объеме и количестве пор определенного диаметра. Пенополиуретан также отличается коротким временем обработки и после отверждения сохраняет свою химическую нейтральность.

Из недостатков материала часто упоминают его относительную горючесть и низкую стойкость к УФ-излучению.

Пены с открытыми и закрытыми порами

Пенополиуретан делится на два основных типа — с открытыми порами и с закрытыми порами.Первый предназначен для использования внутри помещений, в частности, для изоляции стен и крыш, а также для повышения акустического комфорта помещения, поскольку пенополиуретан, помимо теплоизоляционных свойств, имеет очень высокий коэффициент шумоподавления. Пенопласт с открытыми порами является паропроницаемым, поэтому можно сказать, что покрытая им поверхность «дышит». Распыляется изнутри прямо на крышу, легко наносится на мембрану или доску.

По техническим параметрам — пенопласт с открытыми ячейками имеет плотность 7–14 кг / м. 3 , а коэффициент теплопроводности от 0.От 034 до 0,039 Вт / (м * К). Среди видов пенополиуретана с открытыми порами есть материалы с разной огнестойкостью. Лучшие из них имеют рейтинг E.

Другая группа — пенополиуретаны с закрытыми порами — благодаря высокой водостойкости, повышенной жесткости и прочности используются на открытом воздухе и в помещениях с повышенной влажностью.

Его структура содержит более 90% закрытых ячеек, а его плотность колеблется от 30 до 60 кг / м. 3 . Коэффициент теплопроводности пенополиуретана с закрытыми порами составляет от 0,02 до 0,024 Вт / (м * К).

Виды пенопласта с закрытыми порами различаются по параметрам в зависимости от области применения. С одной стороны, он идеально подходит для изоляции фундаментных стен, потолочных конструкций, крыш и полов. С другой стороны, его можно использовать в промышленных и сельскохозяйственных зданиях, например, для изоляции производственных полов, складов, холодильных складов или животноводческих помещений.

Одно- и двухкомпонентные пены

Эти два типа отличаются тем, что для отверждения первым требуется влажность воздуха и строительных материалов. Последний подвергается отверждению в результате химической реакции между двумя его компонентами.

Однокомпонентная пена применяется в помещениях с неограниченным потоком воздуха и на открытом воздухе. Причина проста. Чем выше влажность (более 35%) и температура воздуха, тем быстрее затвердевает пена. В пределах ок. За 25 минут пена увеличивается в объеме примерно на 35%, поэтому полости необходимо заполнить примерно на 50% или 60%.

Двухкомпонентная фасонная пена подвергается химическому отверждению без доступа влаги. Поэтому его можно использовать в труднодоступных местах, сухих и требующих пены отличного качества.Этот вид пены также подходит для фиксированного соединения деревянных конструкций. В пределах ок. За 25 минут двухкомпонентная пена увеличивается в объеме примерно на 30%, поэтому не следует заполнять полости полностью, а только на 80%.

Пена для пистолетных и шланговых распылителей

Пенополиуретан для распыления и стандартный (для шланга) жесткие полиуретановые пены являются обычно используемыми герметизирующими материалами.Здесь решающее значение имеет метод нанесения. Первый тип требует специального пистолета для пены, который обеспечивает точное нанесение. Шланговая пена для распыления, с другой стороны, получила свое название от специального шланга, через который пена распыляется. Этот вид пены используется чаще, поскольку он дешев и не требует специальных инструментов для нанесения.

Пена зимняя, летняя и круглогодичная

Пенополиуретан можно различать в зависимости от диапазона наружных температур во время обработки.Как видно из названия, зимняя пена используется при низких температурах, а летняя — при температуре не ниже 10 ° C. Круглогодичная пена отличается лучшей температурной переносимостью. Однако помните, что последнего следует избегать как при очень низких, так и при очень высоких температурах.

Пенополиуретан напыляемый: оптимальный изоляционный материал

Полиуретановые системы являются одними из наиболее часто используемых материалов для утепления зданий благодаря своим превосходным свойствам.Их структура гарантирует воздухонепроницаемость, непроницаемость, отсутствие стыков, а также низкую теплопроводность, что позволяет зданиям иметь отличные тепловые характеристики и делает их более энергоэффективными .

Synthesia Technology — производитель и дистрибьютор полиуретановых систем для строительства и промышленности. Наибольшее применение этих систем — проектирование. Результат известен как напыляемый полиуретан или напыляемый пенополиуритан.

Происхождение напыляемого пенополиуретана: как его получают?

Жесткий пенополиуретан получается при смешивании двух химических продуктов, диизоцианата и полиола , в присутствии подходящих катализаторов и активаторов. При нанесении жесткой пены для термоизоляции в строительном секторе смешивание происходит в небольшой полости, расположенной в пистолете-распылителе.

После того, как компоненты смешаны, тепло, выделяющееся во время реакции, используется для испарения расширительного агента, что является причиной превращения смеси в пену, объем которой приблизительно в 30 раз превышает объем компонентов в жидком состоянии.

Важно знать , как правильно наносить распыляемую пенополиуретан , учитывая ряд факторов, которые варьируются от погодных условий и настроек оборудования до типов и методов нанесения.

В этом видео (на испанском языке) вы можете подробно увидеть, как жесткий пенополиуретан образуется из этих двух компонентов:

Свойства напыляемой пенополиуретана

Тепловые свойства

Этот материал обладает высокой устойчивостью к воздействию времени. имеет длительный срок службы, не портясь более 50 лет.

Жесткий напыляемый пенополиуретан является наиболее эффективным изоляционным материалом, поскольку минимальная толщина требуется для изоляции той же поверхности, что и другие изоляционные материалы. Это хорошее тепловое поведение по отношению к толщине предполагает экономическое преимущество, поскольку полезная поверхность здания не теряется.

Сочетание термических и экономических преимуществ стало одной из основных причин развития рынка напыляемой полиуретановой пены.

Водонепроницаемые свойства

При использовании сплошного покрытия, такого как напыляемый пенополиуретан с закрытыми ячейками, штукатурка не требуется, поскольку сам материал соответствует требованиям к гидроизоляции.Это предполагает как экономическое преимущество, так и преимущество в размере, поскольку необходимая толщина меньше.

Что касается влажности, то в большинстве случаев напыляемая полиуретановая пена гарантирует отсутствие межклеточной конденсации благодаря значениям влажности и ее плотности. Эта особенность обеспечивает прозрачность ограждения, что позволяет избежать патологий, связанных со здоровьем в помещении, и в то же время гарантирует долговечность здания.

Свойства воздухонепроницаемости

Оптимальная система изоляции должна обеспечивать как теплоизоляцию, так и хорошее поведение против воздуха.Короче говоря, он должен гарантировать герметичность здания .

Герметичность — одна из концепций, вокруг которых вращаются пассивных домов , позволяя экономить до 80% по сравнению с традиционным зданием.

Напыляемая полиуретановая пена представляет собой непрерывную изоляцию : эта непрерывность образует барьер для воздуха, который позволяет оболочке здания иметь соответствующий уровень воздухонепроницаемости.

Системы напыляемой пенополиуретана с изоляционной функцией

Как мы уже указывали выше, Synthesia Technology является производителем и дистрибьютором полиуретановых систем для строительства и промышленности.

В случае напыляемой полиуретановой пены наши полиуретановые системы, применяемые для зданий, основаны на трех функциях: теплоизоляция, звукоизоляция и антирадоновые барьеры.

Пенополиуретан напыляемый в качестве теплоизоляции

Можно констатировать, что напыляемый пенополиуритан быстро набирает обороты, и это во многом связано с его функциями теплоизоляции. Ниже приведены некоторые примеры применения наших напыленных полиуретановых систем с функциями теплоизоляции:

Пенополиуретан напыляемый в качестве звукоизоляции

У нас есть ряд напыляемых полиуретановых систем, которые, помимо функции теплоизоляции, обладают отличными акустическими характеристиками.Подробнее об этом читайте в:

.

Пенополиуретан напыляемый как антирадоновый барьер

Наша новейшая полиуретановая система сочетает в себе функции теплоизоляции с функцией антирадонового барьера. Система распыления пены ECO superinsulation ECO представляет собой эффективное решение против опасности газообразного радона в зданиях.

Этот противорадоновый барьер оптимален как в новостройках, так и в уже построенных зданиях.

Приведенные выше примеры — это лишь некоторые из наших полиуретановых систем, разработанных для зданий. У нас есть широкий ассортимент и специальная линия полиуретана для промышленного применения.

Хотите узнать больше о полиуретановых системах с напылением Synthesia Technology? Не стесняйтесь обращаться к нам.

Пенополиуретан для теплоизоляции, произведенный из касторового масла и сырого глицеринового биополиса

3.1. Исследование лучшей бинарной смеси для производства пенополиуретана

Производство бинарного полиола было сначала изучено с помощью физической смеси чистого глицерина и касторового масла, варьируя содержание глицерина. Некоторые пены не обладают хорошей стабильностью размеров (а). При увеличении содержания чистого глицерина наблюдалось, что пены становились более плотными и мягкими. Составы с содержанием чистого глицерина 20% и 40% ( по массе / по массе ) не росли как типичная пена, давая очень жесткий твердый материал.Пены, полученные с использованием полиола, содержащего 50% ( вес. / вес ) чистого глицерина, имели высокую гомогенность, но при увеличении этого содержания пены становились очень рыхлыми.

Пены производятся с различным содержанием чистого глицерина: ( a ) 20%; ( b ) 40%; ( c ) 50%; ( d ) 60%; и ( e ) 80%, а также варьируя содержание сырого глицерина: ( f ) 10%; ( г ) 20%; ( ч ) 30%; ( и ) 40%; ( j ) 50%; ( к ) 60%; и (-1 ) 70% полиолов.

Затем чистый глицерин был заменен неочищенным глицерином, побочным продуктом производства биодизельного топлива, с целью синтеза новых пен, и результаты были совершенно другими. Пены с сырым глицерином и полиолом касторового масла (обозначенные GCo, f – l) были более однородными и демонстрировали хорошую стабильность размеров по сравнению с пенами, синтезированными с чистым глицерином (a – e). Основываясь на этом экспериментальном поведении, мы полагаем, что примеси сырого глицерина (щелочной катализатор, метанол, метиловые эфиры жирных кислот, метиловые эфиры жирных кислот) ответственны за лучшие свойства пен.Чтобы понять это поведение, можно провести дополнительные исследования. О подобном поведении уже сообщалось в литературе при оценке эффектов замены чистого глицерина на неочищенный глицерин для получения полиолов при сжижении биомассы. Эти исследования также подтверждают, что эти примеси сырого глицерина улучшили свойства полиолов и полиуретанов [9,11,30].

Было обнаружено, что при увеличении количества сырого глицерина наблюдалось снижение жесткости и стабильности размеров пен.По этой причине пена, полученная из полиола, содержащего 10% сырого глицерина и 90% касторового масла ( w / w ) (f), была выбрана для проведения дальнейших исследований. Гидроксильное число (240 мг · КОН · г -1 ) и вязкость (436,5 мм 2 · с -1 ) этого полиола были измерены, что указывает на то, что эти полиолы подходят для получения жестких пен [4]. Подобные результаты уже сообщались в литературе для полиолов из касторового масла [26].

Важно отметить, что полиол, используемый для производства нашей лучшей пены, с 10% глицерина и 90% касторового масла ( w / w ), имеет молярное соотношение глицерин / касторовое масло, примерно равное 1 (с учетом молярной массы глицерина и касторового масла 92.09 и 895,33 г · моль -1 соответственно). Наблюдая за структурой этих молекул (), в каждой молекуле глицерина есть три гидроксильные группы и три варианта рицинолевой кислоты в структуре триглицерида, которые подходят для превращения в группы ОН с помощью реакций предварительной обработки. Таким образом, можно считать, что 1 моль глицерина имеет такое же количество групп ОН, что и 1 моль касторового масла. Затем, когда мы использовали бинарную смесь 1: 1, количество ОН удваивалось. Такое же количество гидроксильных групп можно получить, вставляя ОН при каждом восстановлении рицинолевой цепи касторового масла.Затем наше исследование было выполнено с использованием бинарной смеси без модификации касторового масла, чтобы избежать дополнительных затрат в процессе.

Состав касторового масла (рицинолевая кислота является основным компонентом) и молекул глицерина.

3.2. Исследование влияния катализатора и вспенивающего агента на свойства пен

Характеристики характеристик, полученные для различных пен, которые были приготовлены с использованием лучшего бинарного полиола (10% сырого глицерина и 90% касторового масла w / w ), будут следующими: обсуждается в этом разделе.Составы будут представлены с использованием римских цифр, как показано на.

FTIR-спектры возобновляемого сырья, используемого для производства полиолов GCo, показаны на рис. Полоса, соответствующая колебанию гидроксильной группы, наблюдается примерно при 3700–3000 см, –1 . Характерные участки двойных связей в группах касторового масла C = C – H и C = C наблюдаются при 3020 и 1740 см −1 соответственно. Полосы около 3018 и 2710 см -1 относятся к фрагментам алифатических цепей CH 2 и CH 3 , которые довольно выражены в касторовом масле из-за 18-углеродной цепи.Наблюдается, что характеристическая полоса карбонильных и карбоксильных групп центрируется при 1743 см -1 в спектре касторового масла. Деформация алкенов групп CH 2 , присутствующих в структуре касторового масла, наблюдается в сильной полосе при 1458 см -1 . Полосы около 1112–1000 см –1 указывают на присутствие первичных и вторичных гидроксильных групп. Эти полосы очень ярко выражены в спектре сырого глицерина из-за трех гидроксильных групп, присутствующих в его короткой цепи [16,18].

FTIR-спектры сырья, GCo-полиола и GCo-пены (состав II)

Все спектры пен, полученных из GCo-полиолов, очень похожи, в то время как типичный спектр пены показан на диаграмме, где представлены характеристики полиуретана. группы. Растяжение и колебания NH-групп наблюдались между 3808–3308 и 1512 и 1510 см, –1 соответственно. Деформация связей CH 2 наблюдалась двумя тонкими полосами при 2900 и 2890 см -1 .Колебания групп N = C = N и N = C = O относятся к полосам между 2390 и 2150 см -1 . Другие моды колебаний связи CH также наблюдались при 1464, 1418, 1364 и 1294 см -1 . Полоса между 1730 и 1720 см -1 соответствует протяженности уретановой связи без CO, и около 1700 см -1 водородная связь между карбонильными и водородными атомами (из групп NH) уретана также является наблюдаемый. Полоса, связанная с растяжением асимметричных звеньев OCONH, обнаружена при 1380 см -1 .Полосы между 1100 и 1000 см -1 были отнесены к первичным и вторичным гидроксильным группам [16,17].

Термическое поведение пен GCo, содержащих различные типы и количества катализатора, показанные в, были оценены термогравиметрическим анализом (TGA и DTG). Различные пены продемонстрировали одинаковую термическую стабильность, а кривые DTG показали три области потери веса. Первое событие (около 300 ° C) соответствует термическому разложению уретана, свободному изоцианату и спиртам; второе событие связано с разрушением жестких сегментов при 370 ° C; и третье событие, приблизительно при 480 ° C, связано с термической деградацией гибких сегментов и других сегментов оставшейся структуры [31,32].

Термогравиметрический анализ: кривые ТГА ( a , c ) и DTG ( b , d ) пен с полиолом GCo с различными типами и количествами вспенивателей. ( a , b ) составы II, VII, VIII; ( c , d ) составы II, IV, VI пен, показанные на.

Влияние различных вспенивающих агентов на термическую стабильность пен GCo было оценено, как показано на a, b. Результаты показывают, что тип вспенивающего агента существенно не изменяет термическое поведение пен, о чем свидетельствуют аналогичные кривые пен, синтезированных с водой, циклопентаном и н-пентаном.

Также исследовали влияние количества вспенивателя (воды) в составах (c, d). Результаты показывают, что количество воды в качестве вспенивающего агента не оказало значительного влияния на термическую стабильность пен, полученных с полиолом GCo, с учетом того, что все кривые имеют одинаковый профиль, что указывает на аналогичную термическую стабильность.

Кажущаяся плотность — важный параметр ячеистых полимеров. Влияние типа вспенивающего агента на кажущуюся плотность пен, полученных из полиолов GCo (), показало, что составы с физическими вспенивающими агентами (циклопентан и н-пентан) дают пену с более высокой плотностью, чем синтезированные с химическим вспенивающим агентом (вода ).Подобные результаты были описаны в литературе [32,33,34], и это поведение указывает на то, что меньшие ячейки образуются из-за быстрого испарения физических вспенивающих агентов, которые имеют низкую температуру кипения, во время стадии сильно экзотермического роста пены в сравнение с CO 2 , полученным при реакции воды с изоцианатом [35].

Таблица 2

Значения плотности пен с различными вспенивателями.

Состав Пенообразователь Кажущаяся плотность (кг · м -3 )
II Вода 37.4
VII н-пентан 61,3
VIII Циклопентан 99,3

Было также оценено влияние кажущейся плотности пенообразователя (воды) на плотность пены. как показано в а. При увеличении количества воды наблюдается уменьшение плотности, что свидетельствует о том, что более высокие клетки образуются с усилением продукции CO 2 из реакции воды и изоцианата [36].

( a ) Кажущаяся плотность и ( b ) средний диаметр пен с различным содержанием вспенивателя (воды) и катализатора. Цифры, соответствующие составам пены (), указаны в каждой точке этих графиков.

a также показывает влияние содержания катализатора на плотность пены. Уменьшение кажущейся плотности наблюдалось при увеличении количества катализатора в композициях. Такое поведение можно объяснить увеличением скорости полимеризации с увеличением содержания металлоорганического катализатора в составе, что позволяет избежать высвобождения CO 2 во время образования ячеек пены [4].Поскольку реакция происходит с более высокой скоростью, вспенивающий агент захватывается в структуре, и ячейки имеют больший диаметр и меньшую плотность (a, b, соответственно) [37]. Этот эффект более заметен для пен с более высоким содержанием воды. Эти результаты кажущейся плотности согласуются со значениями, измеренными для тех же жестких пенополиуретанов, синтезированных с использованием полиолов касторового масла [19,26].

Влияние различных вспенивающих агентов на ячеистую структуру пен можно также наблюдать на СЭМ-изображениях пен, синтезированных с водой и циклопентаном.Пены, приготовленные с использованием воды в качестве вспенивателя, показали наибольший размер ячеек, что подтверждает данные о плотности (а). Пентан имеет низкую температуру кипения (около 50 ° C) и очень быстро улетучивается, как ранее объяснялось при обсуждении данных о плотности. Пена с 6% циклопентана показала низкую стабильность размеров, и по этой причине ее СЭМ-микрофотография здесь не показана.

СЭМ-микрофотографии пен GCo с различными типами и содержанием вспенивающих агентов и катализатора DBTDL (шкала 500 мкм 50 ×).Номера составов пены () указаны на каждой микрофотографии.

Пены, в состав которых входит вода в качестве вспенивателя, демонстрируют наилучшую стабильность размеров, самую низкую кажущуюся плотность и более высокую однородность ячеек. Основываясь на этих результатах, мы выбрали этот состав, чтобы оценить влияние количества катализатора на механические свойства и проводимость. Еще один важный аспект, на который следует обратить внимание, заключается в том, что использование воды в качестве вспенивателя считается экологически безопасным и недорогим вариантом.

Влияние содержания воды в качестве вспенивающего агента также оценивалось с помощью изображений SEM, как показано на рис. Было замечено, что концентрация воды прямо пропорциональна размеру ячейки (b). Эти анализы согласуются с данными плотности (а). Пены, полученные с использованием 4% воды, имели более высокую однородность ячеек по сравнению с пенами, содержащими 2% воды. Пены, содержащие 6% воды, давали более крупные и неоднородные ячейки, что указывает на то, что 4% воды является оптимальным количеством для использования в составах пен.

Сравнение количества катализатора в ячейках пены (), приготовленных с водой, показало, что увеличение содержания катализатора дает ячеистые материалы с более высоким средним диаметром ячеек, подтверждая значения плотности в a. Пены, синтезированные с 2% DBTDL, показали наилучшую гомогенность клеток, несмотря на более высокий диаметр клеток, как показано в b. Средний диаметр пен, полученных в этом процессе, меньше, чем данные, представленные в литературе (от 107 до 121 мкм) для пен, синтезированных из предварительно полимеризованного касторового масла [28], что является важным результатом для наших применений пен.

Основным свойством применения пенопласта в качестве теплоизоляции является его теплопроводность. Этот параметр был измерен для жестких пен, синтезированных с использованием воды в качестве вспенивателя, и результаты представлены в. Было замечено, что при увеличении количества воды в этих составах наблюдалось снижение теплопроводности. Этот результат можно объяснить уменьшением плотности и увеличением среднего диаметра ячеек пен [38].

Теплопроводность пен с различным содержанием вспенивателя (воды) и катализатора (DBTDL).Количество составов пены () указано в каждой полосе на этом графике.

Влияние количества катализатора на это свойство также представлено в. Использование более высокого содержания катализатора в рецептурах вызывает небольшое увеличение значения теплопроводности, несмотря на снижение плотности вследствие увеличения размера ячеек, как показано на. Пены, синтезированные в этом исследовании, показали лучшие результаты по сравнению с теми, о которых сообщалось в литературе для пен, полученных из возобновляемого сырья, значения которых варьируются от 0.0233 и 0,0505 Вт · м −1 · K −1 , что позволяет предположить, что эти материалы потенциально могут использоваться в качестве теплоизоляции [22,39,40]. Эти результаты по теплопроводности также лучше, чем для пен, полученных из предварительно обработанного касторового масла, особенно если мы рассмотрим использование очень простого и недорогого метода производства [19,28].

Были оценены механические свойства пен, синтезированных с различным содержанием вспенивателя и катализатора, и результаты показаны на рис.Эти результаты представляют значения, аналогичные тем, которые описаны в литературе для пен, полученных из полиолов касторового масла, которые находятся в диапазоне от 125 до 220 кПа [16,19,25,26]. Значительное снижение прочности на сжатие и модуля Юнга пен наблюдалось при добавлении более высоких количеств вспенивателя, что может быть связано с уменьшением плотности и увеличением размера ячеек. По мере увеличения ячеистой структуры требуется меньшее усилие, чтобы вызвать деформацию этих пен [36].

( a ) Прочность на сжатие и ( b ) модуль Юнга пен с различным содержанием вспенивающего агента (воды) и катализатора (DBTDL).Цифры, соответствующие составам пены (), указаны в каждой точке этих графиков.

Результаты прочности на сжатие и модуля Юнга пен с различным количеством катализатора в рецептурах (a, b) показали, что нет значительных изменений значений при увеличении количества катализатора, особенно для рецептур с 4% и 6% воды в качестве вспенивателя. Вариации находятся в пределах экспериментальных ошибок.

Сравнивая все составы, было замечено, что пена с наилучшей теплопроводностью (0.0141 Вт · м -1 · K -1 ) был составлен с 1% DBTDL и 6% воды, который также показал низкое значение кажущейся плотности (23,9 кг · м -3 ). Однако этот образец показал низкую прочность на сжатие (51,01 кПа) и модуль Юнга (3,44 кПа), что позволяет предположить его применение в качестве изолятора мест, не подвергающихся высоким нагрузкам. Пена, содержащая 2% DBTDL и 2% воды, обладает более высокой прочностью на сжатие (187,93 кПа) и модулем Юнга (27,74 кПа), а также низким значением кажущейся плотности (37.4 кг · м −3 ). С другой стороны, значение теплопроводности было выше (0,0207 Вт · м -1 · K -1 ) по сравнению с другими составами; действительно, это значение изоляционных свойств находится в диапазоне типичных коммерческих продуктов [2].

5 Наиболее распространенные теплоизоляционные материалы

Сегодня на рынке доступно множество дешевых и распространенных изоляционных материалов. Многие из них существуют уже довольно давно. У каждого из этих изоляционных материалов есть свои плюсы и минусы.В результате, решая, какой изоляционный материал вам следует использовать, вы должны знать, какой материал лучше всего подойдет в вашей ситуации. Мы рассмотрели такие различия, как R-ценность, цена, воздействие на окружающую среду, воспламеняемость, звукоизоляция и другие факторы, указанные ниже. Вот 5 наиболее распространенных типов изоляционных материалов:

Изоляционный материал Цена / кв. Ft. R-Value / дюйм Экологически чистый? Легковоспламеняющийся? Банкноты
Стекловолокно $ R-3.1 Да Нет Не впитывает воду
Минеральная вата $$ R-3.1 Да Нет Не плавится и не способствует горению
05 $ R-3,7 Да Да Содержит наибольшее количество переработанных материалов
Пенополиуретан $$$ R-6.3 Нет Да Отличный звукоизолятор
Полистирол (EPS) $ R-4 Нет Да Трудно использовать вокруг дефектов

1.Стекловолокно

Стекловолоконная изоляция.

Стекловолокно — наиболее распространенная изоляция, используемая в наше время. Стекловолокно способно минимизировать теплопередачу благодаря тому, как оно изготовлено, эффективно вплетая тонкие пряди стекла в изоляционный материал. Главный недостаток стекловолокна — опасность обращения с ним. Поскольку стекловолокно состоит из тонко сплетенного кремния, образуется стеклянный порошок и крошечные осколки стекла. Это может привести к повреждению глаз, легких и даже кожи, если не надето соответствующее защитное снаряжение.Тем не менее, при использовании надлежащих средств защиты установка стекловолокна может быть выполнена без происшествий.

Стекловолокно — отличный негорючий изоляционный материал со значением R от R-2,9 до R-3,8 на дюйм. Если вы ищете дешевую изоляцию, это определенно лучший вариант, хотя ее установка требует мер предосторожности. Обязательно используйте защитные очки, маски и перчатки при работе с этим продуктом.

2. Минеральная вата

Минеральная вата.

Минеральная вата фактически относится к нескольким различным типам изоляции.Во-первых, это может относиться к стекловате, которая представляет собой стекловолокно, произведенное из переработанного стекла. Во-вторых, это может относиться к минеральной вате, которая является типом утеплителя из базальта. Наконец, это может относиться к шлаковой вате, которая производится из шлака сталелитейных заводов. Большая часть минеральной ваты в Соединенных Штатах на самом деле является шлаковой ватой.

Минеральную вату можно купить в войлоках или в виде сыпучего материала. Большинство минеральной ваты не имеют добавок, которые делают ее огнестойкой, что делает ее непригодной для использования в условиях сильной жары.Однако он не горюч. При использовании в сочетании с другими, более огнестойкими формами изоляции, минеральная вата определенно может быть эффективным способом изоляции больших площадей. Минеральная вата имеет R-ценность от R-2,8 до R-3,5.

3. Целлюлоза

Целлюлозный изоляционный материал.

Целлюлозный утеплитель, пожалуй, один из самых экологически чистых видов утеплителя. Целлюлоза производится из переработанного картона, бумаги и других подобных материалов и поставляется в сыпучем виде.Целлюлоза имеет значение R от R-3,1 до R-3,7. Некоторые недавние исследования целлюлозы показали, что это может быть отличный продукт для минимизации ущерба от огня. Из-за компактности материала целлюлоза практически не содержит кислорода. Отсутствие кислорода в материале помогает свести к минимуму ущерб, который может вызвать пожар.

Таким образом, целлюлоза является не только одним из наиболее экологичных видов изоляции, но и одним из наиболее огнестойких видов изоляции.Однако у этого материала есть и недостатки, например, аллергия на газетную пыль. Кроме того, найти специалистов, умеющих использовать этот тип изоляции, относительно сложно по сравнению, скажем, со стекловолокном. И все же целлюлоза — дешевое и эффективное средство изоляции.

4. Пенополиуретан

Полиуретановая изоляция.

Пенополиуретан, хотя и не самый распространенный из изоляционных материалов, является отличной формой изоляции. В настоящее время в пенополиуретане используется газ, не содержащий хлорфторуглерода (CFC), в качестве вспенивающего агента.3). Они имеют R-значение приблизительно R-6,3 на дюйм толщины. Существуют также пены низкой плотности, которые можно распылять на участки, не имеющие теплоизоляции. Эти типы полиуретановой изоляции обычно имеют рейтинг R-3,6 на дюйм толщины. Еще одно преимущество этого типа утеплителя — его огнестойкость.

5. Полистирол

Полистирол (пенополистирол).

Полистирол — это водостойкий термопластичный пенопласт, который является отличным звуко- и температурным изоляционным материалом.Он бывает двух типов: вспененный (EPS) и экструдированный (XEPS), также известный как пенополистирол. Эти два типа различаются по производительности и стоимости. Более дорогой XEPS имеет R-значение R-5,5, а EPS — R-4. Утеплитель из полистирола имеет уникально гладкую поверхность, которой нет ни в одном другом изоляционном материале.

Обычно пену создают или разрезают на блоки, идеально подходящие для утепления стен. Пена легковоспламеняющаяся, и ее необходимо покрыть огнестойким химическим веществом под названием гексабромциклододекан (ГБЦД). ГБЦД недавно подвергся критике из-за рисков для здоровья и окружающей среды, связанных с его использованием.

Другие распространенные изоляционные материалы

Хотя перечисленные выше элементы являются наиболее распространенными изоляционными материалами, они используются не только. В последнее время стали доступны и доступны такие материалы, как аэрогель (используемый НАСА для строительства термостойких плиток, способных выдерживать нагрев до примерно 2000 градусов по Фаренгейту с небольшой теплопередачей или без нее). В частности, это Pyrogel XT. Пирогель — одна из самых эффективных промышленных изоляционных материалов в мире.Его необходимая толщина на 50% — 80% меньше, чем у других изоляционных материалов. Хотя пирогель немного дороже, чем некоторые другие изоляционные материалы, он все чаще используется для конкретных целей.

Асбест.

Другими не упомянутыми изоляционными материалами являются натуральные волокна, такие как конопля, овечья шерсть, хлопок и солома. Полиизоцианурат, как и полиуретан, представляет собой термореактивный пластик с закрытыми ячейками с высоким значением R, что делает его также популярным в качестве изолятора.Некоторые опасные для здоровья материалы, которые использовались в прошлом в качестве изоляции, а теперь запрещены, недоступны или используются редко, — это вермикулит, перлит и карбамидоформальдегид. Эти материалы имеют репутацию содержащих формальдегид или асбест, что существенно исключило их из списка обычно используемых изоляционных материалов. .

Доступно множество форм изоляции, каждая со своими собственными свойствами. Только тщательно изучив каждый вид, вы сможете определить, какой из них подходит именно вам.Вкратце:

  • Аэрогель дороже, но определенно лучший тип изоляции.
  • Стекловолокно дешевое, но требует осторожного обращения.
  • Минеральная вата эффективна, но не огнестойка.
  • Целлюлоза огнестойкая, экологичная и эффективная, но ее трудно применять.
  • Полиуретан — это хороший изоляционный продукт, хотя и не особенно экологичный.
  • Полистирол — это разнообразный изоляционный материал, но его безопасность остается предметом споров.

Связанные сообщения:

Разница между горячими и холодными изоляционными материалами

Рейтинги изоляции: расчет R-фактора, K-фактора и C-фактора

Теплоизоляция отводных трубопроводов пенополиуретаном | OTC Offshore Technology Conference

Abstract

В этой статье будет представлено состояние разработки, касающейся использования полиуретановой пены (PDF) как части многослойной конструкции склеенных труб в трубных системах со стальной рубашкой.Концепция связанных трубных элементов заключается в том, что тепловое расширение горячей внутренней трубы ограничивается внешней трубой. Диапазон теплоизоляционных и прочностных свойств будет дан с учетом температуры и ожидаемого срока службы. В документе представлены соображения относительно проектирования, производства и монтажа.

Введение

Растет спрос на теплоизолированные выкидные трубопроводы для глубоководных нефтяных и газовых месторождений. Связанная система «труба в трубе» с PDF — это рентабельный метод обеспечения как превосходной изоляции, так и длительного надежного срока службы.

Пенополиуретан

ППУ — это материал с превосходными изоляционными свойствами. Он имеет долгую историю применения в строительстве и авиакосмической промышленности, в частности в предварительно изолированных трубопроводах для распределения горячей воды централизованного теплоснабжения. PDF получают путем смешивания полиола и изоцианата вместе с пенообразователем. Сегодня циклопентан используется в качестве пенообразователя, поскольку он не влияет на озоновый слой. в отличие от фреонов, которые использовались много лет назад. Однако циклопентан обладает такой же стабильностью и изоляционными свойствами, как и ранее использовавшиеся фреоны.

Рисунок 1 Производство труб (доступно в полной бумаге)

При традиционном методе несущая труба центрируется в трубе-оболочке с помощью дополнительных прокладок и закрывается с обоих концов, чтобы создать ограниченное пространство. Две трубы расположены под соответствующим углом. Смесь полиола, изоцианата и циклопентана вводится в затрубное пространство, где она вступает в реакцию и полностью заполняет пространство между трубами. Используя правильный рецепт и контролируя температуру поверхностей труб, очистку поверхности и количество впрыскивания, вы можете получить полное заполнение без пустот и с надлежащим сцеплением между PDF и трубами.

Изоляционные свойства ППУ

Изоляционные свойства ППУ не являются фиксированной величиной — они зависят от ряда аспектов, таких как: плотность пены, температура и состав ячеистого газа. Чтобы проиллюстрировать и оценить взаимодействие между этими факторами, значение лямбда теплопроводности пены разделено на ряд компонентов:

Компонент твердого вещества составляет прибл. 40%, газовая составляющая электролизера ок. 50% и радиационная составляющая ок. 10% от общего значения лямбда PUF, при этом конвекция минимальна.Предполагается, что вклад твердого вещества не зависит от температуры и что вклад газа и излучения можно описать одним значением лямбда как функцией температуры. Таким образом, лямбда-значение PUF можно описать как функцию как температуры, так и плотности пены в пределах рассматриваемого интервала температуры и плотности. На этой основе может быть построена следующая упрощенная модель лямбда-значения PUF:

Из ряда измерений лямбда-значения PUF с различными плотностями были определены функции Sand G.

Теплопроводность пенополиуретана

Теплопередача:
  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепло- и массообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики США, термодинамики, теплопередачи и потока жидкости. Справочник по основам DOE, том 2 из 3.Май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Эддисон-Уэсли, Ридинг, Массачусетс (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
  3. У. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. W.С.С. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. Г. Р. Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в эксплуатацию ядерных реакторов, 1988 г.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, тома 1 и 2. Январь 1993 г.
  9. Пол Ройсс, Нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. K.О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, пересмотренное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Льюис, У. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

Расчетные характеристики аэрозольной пенополиуретановой изоляции

Материалы для воздушных барьеров


Подход

Воздушные барьеры, создаваемые с помощью распыляемой полиуретановой пены, должны быть основной стратегией, используемой при проектировании высокоэффективных конструкций крыши или чердака. Распыление пенополиуретана обеспечивает:

  • Снижение инфильтрации и эксфильтрации как влаги, так и воздуха
  • В сборку добавлены стойки и прочность на сдвиг
  • Превосходные изоляционные свойства
  • Контролируемая тепловая нагрузка приборов и воздуховодов, расположенных в помещении

Материалы воздушного барьера Должны быть:

  • Не пропускает воздух
  • Непрерывно по всей ограждающей конструкции
  • Способны противостоять силам, которые могут действовать на них во время и после строительства
  • Срок службы в течение ожидаемого срока службы здания

Чтобы спроектировать и построить безопасные, здоровые, долговечные, удобные и экономичные здания, воздушный поток необходимо контролировать.Неконтролируемый воздушный поток переносит влагу, которая влияет на долговременные характеристики материала (пригодность к эксплуатации), структурную целостность (долговечность), качество воздуха в помещении (распределение загрязняющих веществ и расположение резервуаров микробов) и характеристики тепловой энергии. Одна из ключевых стратегий управления воздушным потоком — использование воздушных заслонок.

Воздушные барьеры предназначены для защиты от воздействующих на них колебаний давления воздуха. Системы напыляемой пены могут служить в качестве эффективного воздушного барьера, наносимого либо снаружи на структурные элементы (пена с закрытыми порами), либо с внутренней стороны (пена с закрытыми и / или открытыми порами) внутри полых систем при надлежащей толщине.

Системы воздушного барьера предотвращают выход наружного воздуха из ограждения здания или внутреннего воздуха из ограждения здания, в зависимости от климата или конфигурации. Иногда системы воздушного барьера делают и то, и другое. Воздушные барьеры могут располагаться в любом месте ограждающей конструкции.

В холодном климате внутренние воздушные барьеры контролируют отток внутреннего, часто влажного воздуха, тогда как внешние воздушные барьеры контролируют проникновение наружного воздуха и предотвращают смывание ветром через системы изоляции полости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *