Пленочный теплый пол расход электроэнергии: Сколько потребляет пленочный теплый пол

Содержание

Какая мощность пленочного теплого пола на 1м2. Расчет на примерах и помощь в подборе.

    Многие покупатели нашего сайта задают менеджерам следующий вопрос: «Какая мощность пленочного теплого пола?».

    На этой странице мы предоставим точный расчет и распишем, как его высчитывать.

    Потребляемая мощность инфракрасной пленки 220 Вт/м2.

     Цены вы сможете посмотреть по ссылке за 240грн/м2

 

Почитать еще:

Как выбрать теплый пол под ламинат?

Прочитать отзывы о инфракрасной пленки

 

    Это есть стандарт. Практически все ТМ ИК-плекни, которые представлены на украинском рынке имеют эту мощность. Да, есть в продаже мощности и 150 Вт/м2, но это в частности исключения. Так, если вы позвоните в любою компанию по продажам электрооборудования, то вам ответят следующие: «Мощность пленочного теплого пола на 1 м2 составляет — 220 Вт/м2».

Что означает этот показатель?

    Приведем пример:

    Данные: гостиная (площадь — 8 м2), площадь теплого пола (общая площадь — площадь низкостоящих предметов) — 5 м2.

    Максимальная мощность теплого пола: 5м2*220Вт/м2=1100Вт (или 1,1кВт).

    Условное потребление электроэнергии для ИК-пола:

    (1,1 кВт*24ч*31дней)*(0,5….0,6)=(410…..490)кВт/месяц,

где (0,5…..0,6) — коэффициент использования теплого пола (сколько времени работает электропол, а сколько не работает в единицу измерения).

    Разные производители пленочного пола заявляют, что при применении программируемого терморегулятор работа отопления может сократиться с 24 часов в сутки до 8-10 часов. Обычно применяют коэффициент от 0,3 до 0,5.

    На нашем сайте представлены эти полы, как в комплектах, так и в отрезном виде.

    В среднем цена за 1 м2 составляет от 230 грн. Если у вас остались вопросы или возникли сложности с расчетом, обратитесь к нашим менеджерам, и они вам обязательно помогут.

На сайте постоянно действуют акции и скидки для конечного покупателя.

    Если Вы прораб или монтажная организация, то для Вас у нас отдельные линейка скидок. Не стесняйтесь и спрашивайте у наших сотрудников. Приятных покупок и теплых вечеров.

 

Пленочный теплый пол для дома: отзывы, расход электроэнергии

Полы с подогревом уже давно перешли из разряда новинок в комфортный атрибут современной жизни. Такая разработка подарила массу возможностей. При обустройстве используются разные конструкции: водяные устройства или модели с электронагревателями. Но все более популярным становится пленочный теплый пол. Отзывы, расход электроэнергии и некоторые нюансы самостоятельного монтажа мы разберем в сегодняшнем обзоре. Ведь с помощью пленки можно обогреть разные поверхности, например горизонтальные, вертикальные и даже крышу. При его использовании нагрев выполняется с помощью излучения определенных частот.

Пленочная конструкция гарантия того, что ноги всегда будут в тепле

Содержание статьи

Пленочный теплый пол: области применения

Разберемся, в каких случаях применяется необычная технология ИК. Теплый пол оснащен двухслойной пленкой между двумя прослойками излучателей. Они подключаются по параллельной схеме, и даже если один из излучателей выходит из строя, то устройство работает.

Монтаж пленочного материала отличается простотой

Конструкции используются как для разных организаций, так и в частном строительстве. Применяют данный материал не только в жилых комнатах, но и для бассейна, ванной или сауны. Подходит такой вариант и для жителей многоквартирных домов, так как на высоких этажах трубы могут быть более холодными. Излучение считается полностью безопасным, что позволяет применять его для жилых комнат. Можно использовать нагревательную пленку и для обустройства сауны, что считается очень полезным для здоровья. Применяется напольный материал и в сельском хозяйстве, например, для выращивания цыплят. Кроме того, пленка применяется для защиты взлетно-посадочных линий от обледенения.

Пленочная конструкция часто используется как дополнение к основному отоплению

Излучатели выпускаются  в форме рулонов, что удобно для применения любого покрытия. Термостат является обязательным компонентом системы, который идет в комплекте, если купить теплый инфракрасный пленочный пол. Это устройство фиксирует показатели датчиков, что позволяет регулировать нужный нагрев.

Схема подключения пленочной системы

Из технических характеристик у теплого пола стоит отметить следующие показатели:

  • мощность зависит от определенной пленки и варьируется в пределах 150÷400 Вт/кв.м;
  • небольшое выделение электромагнитного поля;
  • материал отличается тугоплавкостью;
  • показатель длины излучения – 7÷20 мкм.
В таблице представлены сравнительные характеристики с аналогичными конструкциями

К сведению! Если вы хотите использовать пленку как единственный вариант обогрева, то она должна покрывать более 70% всей площади. Ее не используют как единственный способ отопления в слишком морозных регионах.

Состав системы пленочного теплого пола

Пленочный пол состоит из карбоновой смеси, которая запакована в пленку из полиэстера.

 Между двумя прослойками располагается углеродная наноструктура, способствующая выработке инфракрасного излучения. Элементы углеродного материала соединяются при помощи меди. При прохождении тока через эти элементы происходит нагрев поверхности всех предметов в радиусе излучения.

Основные элементы теплого пола

ИК пленка выполняется из плотного полимера, который обладает прекрасными звукоизоляционными качествами и противопожарными свойствами. Между двумя слоями находятся нагревательные элементы. Они могут быть сделаны не только из углерода, но и быть биметаллическими. Стоит учитывать, что материал с биметаллическим нагревателем не используется под керамическую плитку.

Конструкционные особенности теплого пола

Система работает от электрической сети. По краям размещаются проводники, к которым подключаются провода от источников питания. В комплект обязательно входит термостат. Он позволяет контролировать степень нагрева с помощью датчиков.

Принцип действия системы пленочного теплого пола

При использовании технологии инфракрасного пола не придется кардинально менять обстановку. Все элементы подогрева закладываются под декоративное покрытие, например, под ламинат или под линолеум. При такой технологии не понадобится переделывать стяжку.

Особенностью системы является то, что излучение в инфракрасном спектре способствует нагреву непрозрачных предметов. При этом сами компоненты системы не нагреваются. Процесс нагрева происходит, благодаря такому явлению, как конвекция: передача тепла происходит предметам помещения, а не воздуху.

Принцип действия системы следующий:

  • Внутри пленки находятся полоски из графита и медно-серебряные проводники. Ток проходит к полоскам, в результате чего и образуется инфракрасное излучение;
  • терморегулятор осуществляет контроль работы системы, а также с его помощью можно запускать определенные режимы;
  • температурный датчик не допускает перегрева пленки.
Особенности работы инфракрасного устройства

Основные технические характеристики: расход электроэнергии

Каждый год электроэнергия становится все более дорогой, поэтому владельцев автономных отопительных систем очень волнует вопрос ее расхода. Чтобы узнать данный показатель необходимо провести расчеты. Вот какие параметры оказывают влияние на расход электроэнергии:

Сравнительная характеристика систем обогрева

Об особенностях вычисления и реальном опыте расхода электроэнергии для пленочных теплых полов можно прочитать в отзывах пользователей. Если материал используется, как дополнительное отопление, то на каждый квадратный метр обогревающего оборудования приходится до 150 Вт в час. А если в качестве основного источника тепла, то расход варьируется в пределах 200÷250 Вт в час. Другими словами, для обогрева помещения площадью 20 кв.м только лишь теплым полом за сутки будет израсходовано 96÷120 кВт электроэнергии. Немало в пересчете на месяц и рубли.

Виды пленок для теплого пола

Для теплого пола используется два типа пленок:

  • инфракрасные – графитовые или карбоновые;
  • биметаллические конвективные с медью и алюминием.

Обе разновидности объединяет исполнение.

То есть нагревающие части располагаются внутри запаянной пленки. Но длина волн будет различаться: тепловой и ИК диапазон.

ИК пленка с биметаллом

Пленочный инфракрасный теплый пол: особенности материала

Перед покупкой материала стоит разобраться в основных его характеристиках. Данные нужны, чтобы правильно рассчитать мощность, правильно выполнить разметку основания  и распланировать размещение полотен.

Вот стандартные показатели обогревающей пленки:

  • ширина рулона – 50÷100 см. В жилых помещениях применяются варианты 50÷60 см. Для офиса, бани или промышленного объекта подойдет вариант 70÷100 см;
  • длина полосы может варьироваться в пределах – 6÷50 см. Если помещение слишком длинное, то можно сделать раздельное подключение. При этом устанавливается два терморегулятора. В этом случае применяется бытовая однофазная электросеть;
  • максимальный показатель мощности составляет 150÷230 Вт/кв.м;
  • температура плавления — 210÷250°С.
Состав пленочного материала

Преимущества и недостатки пленочных теплых полов

Пленочная технология обогрева имеет следующие плюсы:

  • эффективное расходование электроэнергии;
  • равномерный прогрев;
  • исключение перегрева или переохлаждения;
  • снижается запыленность помещения;
  • не требуется специальное обслуживание;
  • излучение электромагнитного поля сводится к нулю;
  • не перегорает кислород в воздухе;
  • при переезде пленку можно демонтировать;
  • устанавливается под любую поверхность;
  • не оказывается воздействие на влажность помещения;
  • высокий показатель теплоотдачи;
  • простота укладки.
При правильном монтаже у такого покрытия масса достоинств

Стоит отметить и некоторые минусы:

  • требуется соблюдать правила подключения системы;
  • не рекомендуется применять, как основное отопление;
  • нет устойчивости к механическим воздействиям.

К сведению! Укладка материала производится без формирования бетонной стяжки. На процесс монтажа уходит немного времени.

Инфракрасная пленка для теплого пола: основные виды

Инфракрасные пленки в зависимости от нагревательного элемента бывают биметаллическими и углеродными.

В углеродном покрытии нагревательные детали выполнены из карбонового волокна. Это углеродная масса со специальными добавками. Углеродный материал используется как для горизонтальных, так и для вертикальных поверхностей. Пленку можно комбинировать и с другими материалами. К минусам покрытия относится его дороговизна. Пленки с графитовым напылением особенно прочные и могут прослужить долгое время.

Покрытие выполняется из лавсановой пленки.

Рулоны инфракрасного покрытия

Как альтернативный вариант применяется биметаллическая пленка. Нагревательный элемент представлен медным и алюминиевым слоем. Покрытие выполняется из эластичной полиуретановой пленки. Пленку с биметаллическим составом нельзя использовать для укладки под керамическую плитку. Кроме того, режим нагрева не рекомендуется выставлять более 27 градусов. При постоянном перегреве пленка может деформироваться.

Саморегулируемая пленка

Пленки классифицируются в зависимости от показателя мощности:

  • материал с мощностью 130÷160 Вт/кв.м подходит для обогрева небольшой площади и под облегченные напольные покрытия;
  • 170÷220 – может использоваться для укладки под плитку и керамогранит, а также для просторных помещений;
  • более 220 – для обустройства теплого пола в промышленных зданиях.

Выбирая материал по мощности, необходимо учитывать и высоту потолков.

Особенности укладки пленочного теплого пола под различные покрытия

Перед монтажом пленки нужно выполнить расчет и сделать проект раскладки. Сначала выполняется план помещения и отмечаются места для установки мебели. Приступая к монтажным работам, нужно заранее узнать особенности укладки материала с учетом напольного покрытия.

Особенности установки варьируются в зависимости от вида финишного материала

Пленочный теплый пол под ламинат

Ламинат — популярное покрытие, которое само по себе достаточно теплое и приятное. Но установка теплого пола поможет создать более комфортные условия в помещении без избыточной влажности.

Преимуществом применения данной технологии является то, что при монтаже пленочного теплого пола под ламинат не требуется стяжка. Как происходит процесс можно посмотреть на видео ниже:

Важное требование к укладке инфракрасного пола – ровное основание. Важно, чтобы на деревянном основании не было щелей или деформаций.

Монтаж под ламинат

Паркет

Паркетная доска является достаточно хрупким материалом. При ее использовании запрещается прогревание более, чем на 27 градусов. Если применяется лаковое покрытие, то оптимальная температура – 21 градус.

При сочетании покрытия с системой «теплый пол» необходимо равномерно прогревать все планки, а доски должны быть из устойчивых к высоким температурам материалов.

Укладка под паркетную доску

Теплый пленочный пол под линолеум

Линолеум – замечательный вариант, так как недорогой и очень практичный. Данный материал легко вписывается в интерьер и за ним просто ухаживать. При использовании пленочного пола следует выбрать многослойный линолеум. Материал должен быть устойчивым к механическим воздействиям, деформациям и выцветанию. Но покрытие  с толстым теплоизоляционным слоем не подойдет, так как оно сделает полы более холодным. Хорошим выбором станет линолеум не очень большой толщины, но с устойчивостью к нагреванию.

В таблице представлен пошаговый монтаж  пленочного теплого пола под линолеум:

Теплый пленочный пол под плитку

Для плитки больше подойдут кабельные маты. Прежде чем установить теплое покрытие нужно сделать выравнивание и утепление пола.

Укладка пленки под плитку отличается от метода укладки под линолеум или ламинат. Пленочный материал может укладываться на имеющуюся основу сухим способом или на новую стяжку. При этом черновой пол, куда выполняется монтаж, должен быть ровным.

В некоторых случаях плитку укладывают на пластины из стекломагнезита или гипсоволокна. На инфракрасное полотно стелется полиэтилен, а затем листы, на которые монтируется керамика.

Монтаж теплого пола под плитку

Подключение пленочного теплого пола к сети

Пленку следует прикрепить к основанию с помощью скотча. Во время монтажных работ не стоит ронять на покрытие тяжелые предметы или сильно ходить по нему. Далее вам пригодится информация, как подключить инфракрасный теплый пол.

В подложке необходимо сделать углубление для размещения клемм, проводов и термодатчика.

Подключение выполняется следующим образом:

  • к медной шине подсоединяются зажимы;
  • монтируются провода. При этом соблюдается требование параллельного подключения. Можно использовать провода разного цвета но лучше с маркировкой;
  • по центру нагревающей полосы монтируется термодатчик;
  • все места соединений изолируются. К клеммам присоединяются гудроновые накладки.
Схема подключения к сети

Установка терморегулятора

Начать монтаж теплых полов рекомендуется с установки терморегулятора. Его монтируют на стене на высоте не ниже 30 см. Прибор устанавливают в стандартную коробку, под которой просверливают отверстия. При этом применяют дрель со специальной насадкой.

Схема подключения прибора

Основные положения безопасности при монтаже теплого инфракрасного пола

Есть определенные правила безопасности, которые следует соблюдать:

  • нельзя подключать к сети рулон с пленкой;
  • во время установки сеть должна быть обесточена;
  • термопленка не должна касаться коммуникаций или арматуры;
  • не стоит выполнять монтаж на участках с большим риском попадания влаги;
  • нельзя заламывать, перерезать и перегибать пленку;
  • установку следует производить при плюсовой температуре;
  • запрещено размещать покрытие рядом с отопительными приборами;
  • при монтаже не используются шурупы или гвозди.

Резистивный пленочный пол — что это?

В резистивных кабелях тепло производится при прохождении по проводнику из алюминия или меди. При этом проводник состоит из множества тонких полос, запаянных в слои полимерной пленки. Расстояние между полосами не более 1 мм. Ток к проводнику подводится при помощи шин, которые располагаются сбоку.

Резистивные пленки устанавливаются только сухим бом, поэтому их не применяют под плитку.

Резистивная пленка

Обзор лучших производителей пленочных теплых полов

Множество компаний предлагают ИК – пленку. Стоит отметить некоторые из них:

  • Caleo – корейская компания, предлагающая самые простые покрытия и ультрасовременные пленки с системой саморегуляции. Продукция данной компании предназначена для укладки сухим способом;
  • Rexva предлагает пленки из углеродных полос стержней с полиэстерным покрытием высокой прочности. Тонкую пленку можно использовать не только для пола, но и для стен или потолка;
  • Heat Plus производит сплошную термопленку и «полосатую». Карбон равномерно наносится на полиэстерную основу, что позволяет увеличить площадь нагрева.

Если вы не решили, какой компании приобрести пленочный теплый пол, почитайте некоторые отзывы на одном из популярном ресурсов:

Отзыв, Duduvanchik: Инфракрасный пленочный теплый пол Caleo — Пользуемся редко, но вещь стоящая.

Достоинства: Греет

Недостатки: Долго разогревается

Кода начинали делать ремонт — я как-то даже не задумывалась о теплом поле. Тем более, что в качестве напольного покрытия мы выбрали пробку, а под нее теплые полы не стелят — она и так теплая.

Подробнее на Отзовик: http://otzovik.com/review_3950669.html

Отзыв, Egorya 17, Мурманск: Инфракрасный теплый пленочный пол «ТермоДАР» — Теплое чудо!

Достоинства: дает тепло

Недостатки: не обнаружено;

В нашей квартире зимой было очень холодно, т. к. две комнаты находятся над аркой мы в них просто замерзали. И вот мы делали ремонт и нам посоветовали этот теплый пол. И теперь у нас в комнате тепло и уютно. Дети и мы ходим босиком и не боимся замерзнуть, а особенно приятно в периоды когда отключают отопление просто здорово.

Подробнее на Отзовик: http://otzovik.com/review_246811.html

Как выбрать и купить пленочные теплые полы — цены, каталоги

В таблице представлены цены на инфракрасный пленочный теплый пол от некоторых производителей. С ее помощью вы получите какое-то представление о существующих на рынке предложениях.

Надеемся, что наш обзор поможет вам сделать правильный выбор. Теплый инфракрасный пол станет превосходным дополнением к основной отопительной системе. А при правильном монтаже прослужит долгие годы.

 

Предыдущая

ИнженерияДренажные трубы для отвода грунтовых вод: назначение, виды, особенности монтажа

Следующая

ИнженерияБесшумный вентилятор в ванную комнату: особенности, виды и порядок монтажа

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Инфракрасный пленочный теплый пол: расход электроэнергии

В большинстве случаев инфракрасный пленочный пол используется в качестве дополнительной системы отопления. Поэтому для комфортного обогрева будет вполне достаточно системы на 150 Вт/м2. Электроэнергии она расходует, как правило, не более 10 % от номинальной мощности, а теплый пол Heat Plus – и того меньше.

Основные преимущества:

  • не пересушивает воздух, так как нагревает не его, а пол или другие предметы;
  • быстро и просто монтируется;
  • не излучает вредные электромагнитные потоки;
  • при механическом повреждении пол не отключится полностью, может выйти из строя только одна полоса или секция;
  • продолжительный срок эксплуатации – более 15 лет.

Основным недостатком пленочного ИК-пола является относительно высокая стоимость.

Устройство и функционирование ИК-пола

Инфракрасный пленочный теплый пол состоит из 3-х основных элементов:

  1. Нагревательная полимерная пленка. В ее устройство входят проводники на основе сплава меди с серебром для подвода тока к графитовым полосам, которые впоследствии генерируют ИК излучение.
  2. Терморегулятор – осуществляет контроль над функционированием системы и оптимизирует ее работу.
  3. Датчик температуры – не позволяет системе нагреваться выше заданных значений.

Особенностью инфракрасного излучения является то, что оно нагревает только непрозрачные предметы, а сами графитовые полосы фактически не нагреваются. В итоге покрытие пола отдает тепло в окружающее пространство, откуда оно путем конвекции распределяется по всей комнате.

Расход электричества

Нагрев термопленки примерно до 50 °C происходит в течение нескольких минут, поэтому на прогрев самой системы электроэнергии тратится немного. С напольным покрытием сложнее – прогревается оно не очень долго, но быстро остывает после отключения системы. В зависимости от мощности и условий эксплуатации теплого пола потребление электричества может колебаться от 30 до 100 Вт/час на нагрев 1 м2.

Так, при круглосуточном обогреве помещения площадью 15 м2 системой мощностью 2,0 кВт, чтобы температура постоянно поддерживалась в определенном значении, терморегулятор программируется на работу 15/15 (15 минут обогревает и 15 находится в выключенном состоянии). В этом случае пленочный теплый пол будет работать 12 часов в сутки, и расходы электроэнергии будут составлять в пределах 13 кВт (то есть на 1 м2 около 70 Вт/час).

Принудительный обогрев (включается при желании) при таких же параметрах помещения и системы (15 через 15), но с температурой 25 °С, будет потреблять 1,5 кВт/час. Объективно оценивая ситуацию – инфракрасный пленочный теплый пол будет работать в пределах 8 часов в сутки, то есть при 4 часах непрерывного функционирования – расход при заданной температуре составит 6 кВт или 1,5 кВт/час (на 1 м2 – 100 Вт/час).

С учетом, что в комнате будет тепло и уютно, а это повышает комфортность и позволяет расслабиться телом и душой после нелегких трудовых будней, такие расходы целиком оправданы.

отзывы, расход электроэнергии и самостоятельная установка — Рамблер/новости

Полы с подогревом уже давно перешли из разряда новинок в комфортный атрибут современной жизни. Такая разработка подарила массу возможностей. При обустройстве используются разные конструкции: водяные устройства или модели с электронагревателями. Но все более популярным становится пленочный теплый пол. Отзывы, расход электроэнергии и некоторые нюансы самостоятельного монтажа мы разберем в сегодняшнем обзоре. Ведь с помощью пленки можно обогреть разные поверхности, например горизонтальные, вертикальные и даже крышу. При его использовании нагрев выполняется с помощью излучения определенных частот.

Пленочная конструкция гарантия того, что ноги всегда будут в тепле

Содержание статьи

1 Пленочный теплый пол: области применения

2 Состав системы пленочного теплого пола

3 Принцип действия системы пленочного теплого пола

4 Основные технические характеристики: расход электроэнергии

5 Виды пленок для теплого пола

6 Пленочный инфракрасный теплый пол: особенности материала

7 Преимущества и недостатки пленочных теплых полов

8 Инфракрасная пленка для теплого пола: основные виды

9 Особенности укладки пленочного теплого пола под различные покрытия

9.1 Пленочный теплый пол под ламинат

9.3 Теплый пленочный пол под линолеум

9.4 Теплый пленочный пол под плитку

10 Подключение пленочного теплого пола к сети

11 Установка терморегулятора

12 Основные положения безопасности при монтаже теплого инфракрасного пола

13 Резистивный пленочный пол — что это?

14 Обзор лучших производителей пленочных теплых полов

15 Как выбрать и купить пленочные теплые полы — цены, каталоги

Пленочный теплый пол: области применения

Разберемся, в каких случаях применяется необычная технология ИК. Теплый пол оснащен двухслойной пленкой между двумя прослойками излучателей. Они подключаются по параллельной схеме, и даже если один из излучателей выходит из строя, то устройство работает.

Монтаж пленочного материала отличается простотой

Конструкции используются как для разных организаций, так и в частном строительстве. Применяют данный материал не только в жилых комнатах, но и для бассейна, ванной или сауны. Подходит такой вариант и для жителей многоквартирных домов, так как на высоких этажах трубы могут быть более холодными. Излучение считается полностью безопасным, что позволяет применять его для жилых комнат. Можно использовать нагревательную пленку и для обустройства сауны, что считается очень полезным для здоровья. Применяется напольный материал и в сельском хозяйстве, например, для выращивания цыплят. Кроме того, пленка применяется для защиты взлетно-посадочных линий от обледенения.

Пленочная конструкция часто используется как дополнение к основному отоплению

Излучатели выпускаются в форме рулонов, что удобно для применения любого покрытия. Термостат является обязательным компонентом системы, который идет в комплекте, если купить теплый инфракрасный пленочный пол. Это устройство фиксирует показатели датчиков, что позволяет регулировать нужный нагрев.

Схема подключения пленочной системы

Из технических характеристик у теплого пола стоит отметить следующие показатели:

мощность зависит от определенной пленки и варьируется в пределах 150÷400 Вт/кв.м;

небольшое выделение электромагнитного поля;

материал отличается тугоплавкостью;

показатель длины излучения – 7÷20 мкм.

В таблице представлены сравнительные характеристики с аналогичными конструкциями

К сведению! Если вы хотите использовать пленку как единственный вариант обогрева, то она должна покрывать более 70% всей площади. Ее не используют как единственный способ отопления в слишком морозных регионах.

Состав системы пленочного теплого пола

Пленочный пол состоит из карбоновой смеси, которая запакована в пленку из полиэстера. Между двумя прослойками располагается углеродная наноструктура, способствующая выработке инфракрасного излучения. Элементы углеродного материала соединяются при помощи меди. При прохождении тока через эти элементы происходит нагрев поверхности всех предметов в радиусе излучения.

Основные элементы теплого пола

ИК пленка выполняется из плотного полимера, который обладает прекрасными звукоизоляционными качествами и противопожарными свойствами. Между двумя слоями находятся нагревательные элементы. Они могут быть сделаны не только из углерода, но и быть биметаллическими. Стоит учитывать, что материал с биметаллическим нагревателем не используется под керамическую плитку.

Конструкционные особенности теплого пола

Система работает от электрической сети. По краям размещаются проводники, к которым подключаются провода от источников питания. В комплект обязательно входит термостат. Он позволяет контролировать степень нагрева с помощью датчиков.

Принцип действия системы пленочного теплого пола

При использовании технологии инфракрасного пола не придется кардинально менять обстановку. Все элементы подогрева закладываются под декоративное покрытие, например, под ламинат или под линолеум. При такой технологии не понадобится переделывать стяжку.

Особенностью системы является то, что излучение в инфракрасном спектре способствует нагреву непрозрачных предметов. При этом сами компоненты системы не нагреваются. Процесс нагрева происходит, благодаря такому явлению, как конвекция: передача тепла происходит предметам помещения, а не воздуху.

Принцип действия системы следующий:

Внутри пленки находятся полоски из графита и медно-серебряные проводники. Ток проходит к полоскам, в результате чего и образуется инфракрасное излучение;

терморегулятор осуществляет контроль работы системы, а также с его помощью можно запускать определенные режимы;

температурный датчик не допускает перегрева пленки.

Особенности работы инфракрасного устройства

Основные технические характеристики: расход электроэнергии

Каждый год электроэнергия становится все более дорогой, поэтому владельцев автономных отопительных систем очень волнует вопрос ее расхода. Чтобы узнать данный показатель необходимо провести расчеты. Вот какие параметры оказывают влияние на расход электроэнергии:

площадь помещения. При этом нужно учитывать, что пленка не укладывается под мебельные гарнитуры;

наличие термодатчика и терморегулятора позволяют снизить затраты;

использование хороших теплоизоляционных материалов;

наибольший расход энергоресурса фиксируется при запуске системы.

Сравнительная характеристика систем обогрева

Об особенностях вычисления и реальном опыте расхода электроэнергии для пленочных теплых полов можно прочитать в отзывах пользователей. Если материал используется, как дополнительное отопление, то на каждый квадратный метр обогревающего оборудования приходится до 150 Вт в час. А если в качестве основного источника тепла, то расход варьируется в пределах 200÷250 Вт в час. Другими словами, для обогрева помещения площадью 20 кв.м только лишь теплым полом за сутки будет израсходовано 96÷120 кВт электроэнергии. Немало в пересчете на месяц и рубли.

Виды пленок для теплого пола

Для теплого пола используется два типа пленок:

инфракрасные – графитовые или карбоновые;

биметаллические конвективные с медью и алюминием.

Обе разновидности объединяет исполнение. То есть нагревающие части располагаются внутри запаянной пленки. Но длина волн будет различаться: тепловой и ИК диапазон.

ИК пленка с биметаллом

Пленочный инфракрасный теплый пол: особенности материала

Перед покупкой материала стоит разобраться в основных его характеристиках. Данные нужны, чтобы правильно рассчитать мощность, правильно выполнить разметку основания и распланировать размещение полотен.

Вот стандартные показатели обогревающей пленки:

ширина рулона – 50÷100 см. В жилых помещениях применяются варианты 50÷60 см. Для офиса, бани или промышленного объекта подойдет вариант 70÷100 см;

длина полосы может варьироваться в пределах – 6÷50 см. Если помещение слишком длинное, то можно сделать раздельное подключение. При этом устанавливается два терморегулятора. В этом случае применяется бытовая однофазная электросеть;

максимальный показатель мощности составляет 150÷230 Вт/кв.м;

температура плавления — 210÷250°С.

Состав пленочного материала

Преимущества и недостатки пленочных теплых полов

Пленочная технология обогрева имеет следующие плюсы:

эффективное расходование электроэнергии;

равномерный прогрев;

исключение перегрева или переохлаждения;

снижается запыленность помещения;

не требуется специальное обслуживание;

излучение электромагнитного поля сводится к нулю;

не перегорает кислород в воздухе;

при переезде пленку можно демонтировать;

устанавливается под любую поверхность;

не оказывается воздействие на влажность помещения;

высокий показатель теплоотдачи;

простота укладки.

При правильном монтаже у такого покрытия масса достоинств

Стоит отметить и некоторые минусы:

требуется соблюдать правила подключения системы;

не рекомендуется применять, как основное отопление;

нет устойчивости к механическим воздействиям.

К сведению! Укладка материала производится без формирования бетонной стяжки. На процесс монтажа уходит немного времени.

Инфракрасная пленка для теплого пола: основные виды

Инфракрасные пленки в зависимости от нагревательного элемента бывают биметаллическими и углеродными.

В углеродном покрытии нагревательные детали выполнены из карбонового волокна. Это углеродная масса со специальными добавками. Углеродный материал используется как для горизонтальных, так и для вертикальных поверхностей. Пленку можно комбинировать и с другими материалами. К минусам покрытия относится его дороговизна. Пленки с графитовым напылением особенно прочные и могут прослужить долгое время. Покрытие выполняется из лавсановой пленки.

Рулоны инфракрасного покрытия

Как альтернативный вариант применяется биметаллическая пленка. Нагревательный элемент представлен медным и алюминиевым слоем. Покрытие выполняется из эластичной полиуретановой пленки. Пленку с биметаллическим составом нельзя использовать для укладки под керамическую плитку. Кроме того, режим нагрева не рекомендуется выставлять более 27 градусов. При постоянном перегреве пленка может деформироваться.

Саморегулируемая пленка

Пленки классифицируются в зависимости от показателя мощности:

материал с мощностью 130÷160 Вт/кв.м подходит для обогрева небольшой площади и под облегченные напольные покрытия;

170÷220 – может использоваться для укладки под плитку и керамогранит, а также для просторных помещений;

более 220 – для обустройства теплого пола в промышленных зданиях.

Выбирая материал по мощности, необходимо учитывать и высоту потолков.

Особенности укладки пленочного теплого пола под различные покрытия

Перед монтажом пленки нужно выполнить расчет и сделать проект раскладки. Сначала выполняется план помещения и отмечаются места для установки мебели. Приступая к монтажным работам, нужно заранее узнать особенности укладки материала с учетом напольного покрытия.

Особенности установки варьируются в зависимости от вида финишного материала

Пленочный теплый пол под ламинат

Ламинат — популярное покрытие, которое само по себе достаточно теплое и приятное. Но установка теплого пола поможет создать более комфортные условия в помещении без избыточной влажности.

Преимуществом применения данной технологии является то, что при монтаже пленочного теплого пола под ламинат не требуется стяжка. Как происходит процесс можно посмотреть на видео ниже:

Важное требование к укладке инфракрасного пола – ровное основание. Важно, чтобы на деревянном основании не было щелей или деформаций.

Монтаж под ламинат

Паркетная доска является достаточно хрупким материалом. При ее использовании запрещается прогревание более, чем на 27 градусов. Если применяется лаковое покрытие, то оптимальная температура – 21 градус.

При сочетании покрытия с системой «теплый пол» необходимо равномерно прогревать все планки, а доски должны быть из устойчивых к высоким температурам материалов.

Укладка под паркетную доску

Теплый пленочный пол под линолеум

Линолеум – замечательный вариант, так как недорогой и очень практичный. Данный материал легко вписывается в интерьер и за ним просто ухаживать. При использовании пленочного пола следует выбрать многослойный линолеум. Материал должен быть устойчивым к механическим воздействиям, деформациям и выцветанию. Но покрытие с толстым теплоизоляционным слоем не подойдет, так как оно сделает полы более холодным. Хорошим выбором станет линолеум не очень большой толщины, но с устойчивостью к нагреванию.

В таблице представлен пошаговый монтаж пленочного теплого пола под линолеум:

Кроме теплого пола, понадобится терморегулятор, теплоотражающий материал, защитная полиэтиленовая пленка скотч, нож, пассатижи, ножницы и отвертка

Заранее следует выбрать место для терморегулятора на стене.

Для теплоизоляции нужно уложить листы теплоотражающего материала, а затем приколоть их степлером.

Полосы фиксируем между собой с помощью скотча.

Термопленку нужно разложить медной полосой вниз. Материал разрезается на необходимые куски по специальной выделенной линии.

Битумной изоляцией нужно изолировать медные шины. Изоляция должна по всему срезу прикрывать серебряные контакты.

В месте будущего размещения проводов закрепляются зажимы. Контактный зажим нужно плотно зажать.

Полосы термопленки необходимо зафиксировать скотчем.

Провода вкладываем в контактный зажим и крепко фиксируем их. Места соединений изолируются битумной изоляцией.

Датчик терморегулятора устанавливается под пленку на черную полосу. Крепить его нужно битумной изоляцией.

Под датчик делавется вырез, чтобы напольное покрытие оставалось равномерным.

Вырезы также делаются под провода и контактные зажимы.

Терморегулятор крепится на стену.

Соединительные провода вставляются в терморегулятор в соответствии с инструкцией.

Затем выполняется тестирование системы.

Сверху укладывается защитная пленка.

Поверх настилается финишное покрытие.

Теплый пленочный пол под плитку

Для плитки больше подойдут кабельные маты. Прежде чем установить теплое покрытие нужно сделать выравнивание и утепление пола.

Укладка пленки под плитку отличается от метода укладки под линолеум или ламинат. Пленочный материал может укладываться на имеющуюся основу сухим способом или на новую стяжку. При этом черновой пол, куда выполняется монтаж, должен быть ровным.

В некоторых случаях плитку укладывают на пластины из стекломагнезита или гипсоволокна. На инфракрасное полотно стелется полиэтилен, а затем листы, на которые монтируется керамика.

Монтаж теплого пола под плитку

Подключение пленочного теплого пола к сети

Пленку следует прикрепить к основанию с помощью скотча. Во время монтажных работ не стоит ронять на покрытие тяжелые предметы или сильно ходить по нему. Далее вам пригодится информация, как подключить инфракрасный теплый пол.

В подложке необходимо сделать углубление для размещения клемм, проводов и термодатчика.

Подключение выполняется следующим образом:

к медной шине подсоединяются зажимы;

монтируются провода. При этом соблюдается требование параллельного подключения. Можно использовать провода разного цвета но лучше с маркировкой;

по центру нагревающей полосы монтируется термодатчик;

все места соединений изолируются. К клеммам присоединяются гудроновые накладки.

Схема подключения к сети

Установка терморегулятора

Начать монтаж теплых полов рекомендуется с установки терморегулятора. Его монтируют на стене на высоте не ниже 30 см. Прибор устанавливают в стандартную коробку, под которой просверливают отверстия. При этом применяют дрель со специальной насадкой.

Схема подключения прибора

Основные положения безопасности при монтаже теплого инфракрасного пола

Есть определенные правила безопасности, которые следует соблюдать:

нельзя подключать к сети рулон с пленкой;

во время установки сеть должна быть обесточена;

термопленка не должна касаться коммуникаций или арматуры;

не стоит выполнять монтаж на участках с большим риском попадания влаги;

нельзя заламывать, перерезать и перегибать пленку;

установку следует производить при плюсовой температуре;

запрещено размещать покрытие рядом с отопительными приборами;

при монтаже не используются шурупы или гвозди.

Резистивный пленочный пол — что это?

В резистивных кабелях тепло производится при прохождении по проводнику из алюминия или меди. При этом проводник состоит из множества тонких полос, запаянных в слои полимерной пленки. Расстояние между полосами не более 1 мм. Ток к проводнику подводится при помощи шин, которые располагаются сбоку.

Резистивные пленки устанавливаются только сухим бом, поэтому их не применяют под плитку.

Резистивная пленка

Обзор лучших производителей пленочных теплых полов

Множество компаний предлагают ИК – пленку. Стоит отметить некоторые из них:

Caleo – корейская компания, предлагающая самые простые покрытия и ультрасовременные пленки с системой саморегуляции. Продукция данной компании предназначена для укладки сухим способом;

Rexva предлагает пленки из углеродных полос стержней с полиэстерным покрытием высокой прочности. Тонкую пленку можно использовать не только для пола, но и для стен или потолка;

Heat Plus производит сплошную термопленку и «полосатую». Карбон равномерно наносится на полиэстерную основу, что позволяет увеличить площадь нагрева.

Если вы не решили, какой компании приобрести пленочный теплый пол, почитайте некоторые отзывы на одном из популярном ресурсов:

Как выбрать и купить пленочные теплые полы — цены, каталоги

В таблице представлены цены на инфракрасный пленочный теплый пол от некоторых производителей. С ее помощью вы получите какое-то представление о существующих на рынке предложениях.

Характеристики

Мощность – 130 Вт/кв.м.

Площадь 10 кв.м.

Удельная мощность – 116 Вт.

Eastec 220 Вт. Ширина полосы 60 см.

Ширина пленки 300 см.

Потребляемая мощность 220 Вт.

Caleo Platinum 50/230-0.5

Площадь – 6 кв.м.

Удельная мощность – 230 Вт/кв.м.

Мощность 220 Вт.

720 за квадратный метр

Надеемся, что наш обзор поможет вам сделать правильный выбор. Теплый инфракрасный пол станет превосходным дополнением к основной отопительной системе. А при правильном монтаже прослужит долгие годы.

Теплый пол электрический расход энергии

Мало кто сегодня будет подвергать сомнению слова о том, что теплые полы не эффективны. Их монтаж позволяет поднять качество жизни на новый уровень. Однако перед их монтажом, особенно перед укладкой электрического теплого пола многих интересует вопрос расхода электроэнергии. Бережливый хозяин обязательно разузнает все детали этого вопроса, чтобы потом не возникло нимало проблем по обслуживанию напольного обогрева и оплате счетов за электричество. Мы также хотим освятить этот вопрос той целью, чтобы помочь узнать сколько электроэнергии потребляет теплый пол.

Мощность нагревательных элементов

Для начала разделим электрический напольный обогрев на его разновидности, а именно:

  1. Инфракрасный пленочный.
  2. Инфракрасный стержневой.
  3. Кабельный.

Каждый из них отличается своими техническими характеристиками. Как следствие это влияет на количество расхода электроэнергии. Например, они различаются по мощности. Здесь все очень просто чем выше мощность теплого пола, тем выше потребление электроэнергии. Один из самых важных параметров – температура нагревания. Именно от этого показателя и будет зависеть то, сколько потребляет электрический теплый пол. Например, в случае использования пленочного инфракрасного теплого пола, то максимальная его температура может достигать до 56 градусов по Цельсию. Инфракрасный стержневой теплый пол имеет максимальную отметку на 60 градусах по Цельсию. Что касается кабельного обогрева, то здесь отметка температуры еще выше и достигает до 65 градусов по Цельсию. Это максимальная температура, до которой может разогреться тот или иной обогрев. Однако, если говорить за рабочую температуру, то в большинстве случае температура выставляется в районе от 30 до 35 градусов по Цельсию. Сопротивление еще момент, который влияет на то, сколько потребляет электрический теплый пол. Чем этот показатель выше, тем больше расхода электричества.

Теперь рассмотрим расход электроэнергии у этих системы напольного обогрева:

  • Инфракрасный пленочный пол имеет расход от 140 до 180 Вт на метр квадратный.
  • Инфракрасный стержневой обогрев на метр квадратный имеет расход около 160 Вт.

Как показывает практика, средний расход электричества составляет 120 Вт на метр квадратный. Более того, чаще всего устанавливают именно инфракрасное отопление, ведь оно экономней всего.

Как рассчитать потребление электроэнергии самостоятельно

Существует простая формула, которая поможет вам узнать приблизительный расход электроэнергии электрического теплого пола. Для этого можно воспользоваться простой формулой:

E = S х N х 0,4

При помощи этой формулы, вы сможете узнать какой расход электричества будет осуществлен теплым полом за месяц или за один день. Рассмотрим, что означает каждая из позиций в этой формуле:

  • E – количество всей потребляемой энергии, которая измеряется в Вт на метр квадратный.
  • S – это площадь отапливаемого помещения.
  • N – номинальная мощность нагревательного элемента.
  • 0,4 – это коэффициент, который учитывает всю площадь обогрева.

Как экономить

Безусловно, узнав о приличном расходе, не стоит сразу отказываться от идеи изготовления напольного обогрева. Обустраивая теплый пол электрический, расход электроэнергии можно снизить. Как? Для решения этой задачи необходимо подойти комплексно. В первую очередь вам необходимо решить, будут теплые полы электрические как основной источник тепла или дополнительный. В случае основного, вам придется приобретать достаточно мощный обогрев. Итак, теперь рассмотрим несколько полезных советов того, как можно снизить расходы на потреблении электроэнергии.

Прежде всего необходимо выполнить качественную теплоизоляцию стен, потолка и пола. Чем выше уровень теплоизоляции, тем меньше будет потребления электроэнергии. Многое зависит и от облицовочного материала. Например, если используется керамическая плитка или керамогранит, то расход будет минимальный. Причина заключается в том, что данный облицовочный материал отличается высоким коэффициентом теплопроводности. Например, деревянный пол, ламинат и прочие материалы имеют гораздо меньший коэффициент теплопроводности. С другой стороны, плитка требует больше энергии для ее прогрева. Однако если обогрев будет служить как основным источником тепла, то это очень выгодное решение. В обратном случае регулярно потребуется немало электроэнергии для подогрева холодного пола.

Еще одно оригинальное решение – использование терморегуляторов и температурных датчиков. Терморегуляторы позволяют настраивать уровень температуры в каждом отдельном помещении на определенном уровне. Более того, каждый терморегулятор укомплектовывается температурным датчиком. Использование терморегулятора позволяет сэкономить до 40% электроэнергии при обогреве.

Совет! Существуют такие терморегуляторы, которые можно программировать по часовой работе. То есть, в ваше отсутствие нагревательный элемент будет иметь меньшую температуру, в ваше присутствие подогрев будет интенсивней. Такое решение позволяет экономить электроэнергию.

Еще одно оригинальное решение – установка многотарифного счетчика. Так, в ночное время осуществляется более экономный подсчет расхода электричества при включенном теплом поле. Обычно, экономия достигает до двух раз. Кроме всего прочего, укладку теплого пола рекомендуется делать только на полезной площади. Если у вас есть крупные габаритные и стационарные предметы, то под ними укладывать греющий элемент не имеет смысла. А если вы отойдете от своего предпочтения и сократите температуру всего лишь на 1 градус, то в итоге вы сможете сэкономить до 5% электроэнергии.

Отличия номинального от реального энергопотребления

Безусловно, мы привели вам те значения, которые преимущественно указывает производитель. Но они практически всегда будут отличаться от реальности. Почему? Например, не всегда есть потребность держать включенным отопление круглые сутки. Особенно если на улице теплая осень/весна. В таком случае можно включать напольное отопление для поддержания комфортной температуры. В этом случае потребление электроэнергии будет минимальным.

Более того, в каждом отдельном случае учитываются индивидуальные особенности того или иного помещения. Если у вас есть маленькие дети, то экономить на тепле никто не будет. Если это подсобное помещение, то температура может быть ниже. Также учитывается качество окон и дверей. То есть обязательно берутся во внимание тепловые потери. Возможно, вы хорошо утеплили полы, но стены в панельном доме очень тонкие. Если их не утеплить, то одного утепленного пола будет недостаточно. Учитывая все эти факторы можно прийти к следующему выводу – определить точный расход электроэнергии в вашем случае сложно. То есть не существует конкретной цифры, от которой можно ориентироваться. На расход потребления электроэнергии теплого пола влияет много факторов.

Заключение

Итак, вот мы и рассмотрели вопрос о том, какой расход потребления электроэнергии электрическим теплым полом. Однозначного ответа здесь нет. То, насколько вам получится экономить электроэнергию, зависит только от вас. Вернее, зависит от того, сколько и какие вы приложите усилия по сбережению тепловой энергии. А для этого вам следует использовать приведенные советы и рекомендации в этой стать. Мы надеемся, что этот материал помог вам глубже вникнуть в суть этого вопроса. Дополнительно смотрите полезный видеоматериал:

Инфракрасная пленка потребление электроэнергии — budmagazin.com.ua

Благодаря новинкам технологии, которые все больше и больше оказывают влияние на нашу с вами жизнь, мы больше не в силах представить свое существование без новых технологий и других благ цивилизации. Одной из таких новинок технологии, которая недавно вошла в нашу жизнь, это система электрический теплый пол. Итак сколько потребляет электричества инфракрасный теплый пол? 

Если вы решили использовать именно этот способ отопления вашего дома, то вам следует знать сколько потребляет электричества инфракрасный теплый пол. Вам необходимо четко осознать, сколько электроэнергии будет расходовать пленочный теплый пол, и выходя из данной информации делать для себя какие-то выводы.

 

Принцип работы теплого пола

Человечество уже давно знакомо с понятием инфракрасного теплого излучения, но его использование в бытовых целях началось только недавно. Сам нагрев происходит из-за прохождения тока сквозь углеродное напыление, которое расположено на пленке. Когда ток проходит через углерод, он испытывает большое сопротивление, а поскольку углерод не проводит электричество, он активно греется, и выделяет инфракрасное теплое излучение. 

В уровне субатомных частиц это выглядит примерно так: электроны, которые расположены вокруг атомов, получают электрическое напряжение и начинают свое очень активное и хаотичное движение. А поскольку межатомное пространство очень маленькое, они постоянно сталкиваются друг с дружкой, да и настолько быстро, что в результате этих диких движений выделяется энергия, которую мы можем ощутить как приятное тепло. 

Большое преимущество данного способа отопления заключается в том, что нагреваются, в первую очередь, только предметы находящиеся вблизи, а не воздух, и уже предметы отдают нам тепло. Данное свойство является крайне позитивным, потому что нет циркуляции пыли, как например это происходит когда работают радиаторы отопления.

 

Расход энергии инфракрасного теплого пола

Сейчас мы узнаем сколько электроэнергии использует система инфракрасного теплого пол, но для этого нам необходимо иметь в виду некоторые цифры. Номинальная мощность ИК теплого пола составляет 220 Вт/кв.м

Ну а сам расход электроэнергии — это величина варьирующая, и далеко не постоянная, из-за этого потребление электричества может составлять от 20-100 процентов по сравнению с номинальным. Как только система теплого пола включается, потребление электричества соответствует номинальному и составляет 100%, то есть 220 Вт на квадратный метр. Но как только мы достигаем необходимую температуру  — терморегулятор отключает электроэнергию и система переходит в экономичный режим. В следующий раз инфракрасная пленка включится лишь на 5-10 минут, для поддержания заданной температуры. В таком экономичном режиме, пленка потребляет очень мало, примерно 20-30% от номинальной мощности, иначе говоря 50-60 Вт на квадратный метр.

Также, электро потребление теплого пола может зависеть и от других факторов:

  • начальная температура бетонной стяжки и самого нагревательного элемента;
  • наличие теплоизоляционной подложки, чем толще подложка под ламинат, тем экономней будет ваш пленочный теплый пол;
  • использование утеплителя в самой стяжке, к примеру можно использовать пенопласт или стиродур.
  • наличие утепляющего материала на стенах, его вид и толщина;
  • использование термостата с функцией программирования;
  • правильно проведенный монтаж;
  • использование теплосберегающих металлопластиковых окон.

Как вы могли заметить потребление электричества системой инфракрасного пленочного теплого пола зависит от большого количества различных факторов, поэтому рассчитать потребление довольно сложно. Исходя из этого, мы рекомендуем вам воспользоватся формулой:

Необходимо взять 40 процентов от номинальной мощности и сделать правку на те факторы которые так или иначе влияют на расход электроэнергии, описание выше. 

Ради вашего удобства, инфракрасный пленочный теплый пол выпускается в 3 размерах — 50, 80 и 100 см в ширину, при этом длина ни чем не ограничивается. 

Важно! Если вы решили использовать инфракрасную пленку как основной способ обогрева вашего дома — то вам необходимо уложить не менее чем 70% всего помещения, для дополнительного же обогрева, никаких ограничений нет.

 

Какую инфракрасную пленку выбрать?

На данный момент лидером среди производителей инфракрасных пленок является компания Enerpia, она заслужила свою репутацию благодаря качеству и энергоэфективности. 

Произвести покупку инфракрасной пленки вы можете прямо сейчас с нашего сайта, по самым выгодным ценам.

 

Мы рекомендуем инфракрасный теплый пол Enerpia:

 

Для вашего удобства есть три вида ширины 50см, 80см и 100см.

 

потребление электроэнергии, формулы и примеры

Тем, у кого при демонстрации возможностей пола с электрическим подогревом сразу же загорелись глаза, и появилось острое желание соорудить дома такой же, следует сразу же указать на то, сколько потребляют тёплые полы электрические. Многим полученные цифры покажутся небольшими, другие же поумерят свой пыл, просчитав счета за электричество. Важно помнить одно — на энергопотребление теплых полов влияет не один, а совокупность факторов.

Содержание статьи

  • Факторы, влияющие на энергопотребление теплого пола
  • Что необходимо для расчета?
  • Порядок расчёта электрического теплого пола
  • Температура пола с электроподогревом

Даже самый экономичный тёплый пол будет серьёзно раскручивать счётчик. К тому же, не все бытовые электрические системы способны его выдержать. Поэтому разумный хозяин, помня, сколько энергии потребляет тёплый пол, так распределит потребление электроэнергии, чтобы она шла на обогрев самой необходимой поверхности и служила лишь добавлением к основной системе отопления.

Факторы, влияющие на энергопотребление теплого пола

  • Больше всего на расход электричества и степень нагрева пола влияет качество теплоизоляции помещения. Чем лучше теплоизоляция, тем меньшее потребление энергии необходимо для поддержания заданной температуры.
  • Вносит свой вклад и вид финишного покрытия пола в помещении. Известно, что тёплый электрический пол, установленный под керамической плиткой, потребляет несколько больше энергии, чем пол под деревом, линолеумом и другими видами покрытий с меньшей степенью теплопроводности.
  • До 30% меньше может израсходовать электрический тёплый пол, температура которого регулируется хорошим и по всем правилам расположенным датчиком температуры.

Что необходимо для расчета?

Чтобы определить примерный расход электроэнергии для конкретной ситуации, нужно знать следующие параметры:

  • обогреваемая площадь;
  • мощность нагревательных элементов;
  • тепловые потери системы.

Для упрощения расчётов в качестве удельной потребляемой мощности, расходуемой на 1 кв. м обогреваемой поверхности, для разных случаев берутся следующие величины:

  • 150 Вт – когда пол нужен лишь для увеличения комфорта;
  • 200 Вт – когда он является полноценной системой отопления.

Следует, однако, иметь в виду, что точный расчет отопления тёплым полом на практике сделать невозможно, поскольку в него вмешиваются различные переменные факторы, которые оказывают своё влияние на общий результат. Поэтому вычисления делаются с приближением и опираются на максимальные значения.

Часто на упаковке отопительной системы указывается расход энергии тёплых полов, что будет неплохим ориентиром при определении конкретных параметров, поскольку паспортная мощность изделия никак не может быть превышена.

Порядок расчёта электрического теплого пола

Чтобы выполнить достаточно точный расчёт электрического тёплого пола, нужно посмотреть на параметры имеющейся модели и определить площадь помещения.

В качестве примера можно взять мощность нагревательного элемента в 150 Вт, а площадь комнаты принять за 20 кв. м.

  1. Вначале нужно прикинуть площадь покрытия для тёплого пола. Поскольку она не должна превышать 70%, то получается 14 кв. м.
  2. Полученное значение площади нужно умножить на удельную мощность элемента:

14 х 150 = 2100 Вт (или 2,1 кВт).

  1. Далее необходимо учесть, какая роль в отоплении жилища будет отведена монтируемому тёплому полу. Поскольку искомым является максимальный результат, то следует предположить, что тёплый пол будет работать 8 часов в сутки, поскольку круглосуточный нагрев электрический тёплый пол по ряду причин не производит.

То есть нужно умножить 2,1 киловатта на 8 часов, что даст 16,8 кВт*ч. Другими словами, тёплый пол в помещении будет каждый день эксплуатации потреблять 16,8 киловатт электроэнергии.

  1. Если умножить полученный результат на 30 (число дней в месяце), то получается, что за месяц устройству потребуется 504 кВт. Конечно, не следует забывать, что полученная величина является максимально возможной для данной системы.
  2. Остаётся только вспомнить текущий тариф на энергопотребление, умножить его на 360 и получить кругленькую сумму в рублях, которую придётся выложить в месяц за удовольствие жить с комфортом.

Стоит отметить, что реальные расходы окажутся примерно вдвое меньше теоретических выкладок – но, только если помещение будет надёжно утеплено, и тёплый пол лишь будет дополнять основную систему отопления.

Температура пола с электроподогревом

Если при монтаже тёплый пол укомплектован температурным датчиком и программатором, то владелец сможет с их помощью задавать полу необходимый режим работы. Однако предел у нагревателей преодолеть не удастся.

Греющие кабели имеют изоляцию, которая может выдержать 100 градусов. Средняя температура пола равна 30 градусам, а максимальная – 65 градусам. Диапазон максимальных температур в матах зависит от их марки, оставаясь в пределах 80-104 градусов. Рабочие температуры матов:

  • кабельных – до 60 градусов;
  • стержневых – 55 градусов.

Плёночные ИК-нагреватели достигают 55 градусов, а сама плёнка плавится при 200-250 градусах.

Поскольку экономный тёплый пол использует терморегулятор, задающий температуру, то точно предсказать расход электроэнергии будет невозможно. Ведь помимо имеющейся теплоизоляции, которая, в общем-то, постоянная, есть ещё переменчивое влияние погоды.

На основании площади помещения и удельной мощности нагревательных элементов можно вычислить только максимальную потребляемую мощность, а её реальную величину можно узнать только в ходе эксплуатации тёплого пола. Да и то эта величина будет постоянно меняться.

Можно лишь добавить, что более экономичными являются системы, способные регулировать степень нагрева.

Наиболее экономичными являются стержневые нагреватели, а следом за ними идут плёночные модели, уровень же всех остальных примерно одинаков.

Как Вы считаете, насколько экономичны электрические теплые полы, и стоит ли платить такие деньги за комфорт? Поделитесь своим мнением в комментариях.

Насколько эффективен электрический теплый пол? Сколько энергии он использует?

Электрические системы лучистого теплого пола обычно очень эффективны и потребляют столько же или меньше энергии, чем другие системы отопления.

Большинство систем подогрева кафельных полов и систем электрического подогрева пола потребляют 12 Вт в час на квадратный фут, что означает, что комната площадью 100 квадратных футов будет потреблять в общей сложности 1200 Вт каждый час, или на 300 Вт МЕНЬШЕ, чем средний обогреватель. В этом случае система подогрева пола не только будет стоить дешевле, но и будет равномерно обогревать комнату.С другой стороны, обогреватель сделает одну сторону комнаты более горячей, чем другую.

Вы можете легко оценить мощность, необходимую для обогрева конкретной комнаты, выполнив следующие действия:

  1. Подсчитайте площадь обогреваемой площади вашего помещения в квадратных футах. Вы можете оценить это, умножив площадь всей комнаты в квадратных футах на 0,9.
    • Пример: 100 кв. Футов x 0,9 = 90 кв. Футов
  2. Затем умножьте отапливаемую площадь на 12, поскольку в большинстве систем используется 12 Вт на квадратный фут.
    • Пример: 90 кв. Футов x 12 Вт на кв. Фут = 1080 Вт
  3. Теперь разделите общее количество ватт на 1000, чтобы получить количество киловатт, которое система будет использовать в час. (Киловатты — это единица измерения, которую взимают электрические компании.)
    • Пример: 1080 Вт ÷ 1000 = 1,08 кВт
  4. Наконец, умножьте количество киловатт, потребляемых в час, на то, сколько электрическая компания взимает за киловатт в вашем районе. Средняя стоимость киловатт-часа в США.S. стоит 0,12 доллара США, но в вашем районе она может быть более или менее высокой.
    • Пример: 1,08 кВт x 0,12 USD = 0,13 USD в час

В этом примере работа системы площадью 90 квадратных футов будет стоить 0,13 доллара в час. Но помните: системы теплого пола не обязательно должны работать 24 часа в сутки, чтобы поддерживать теплый пол.

Чтобы сделать ежемесячную стоимость лучистого тепла еще более доступной, лучший способ управлять использованием энергии вашего теплого пола — это использовать программируемый термостат. Термостаты обладают множеством преимуществ, которые позволяют экономить энергию и затраты.Вот лишь несколько:

  • Эти термостаты можно запрограммировать на обогрев пола только в то время дня, когда система будет использоваться, и они учатся компенсировать время нагрева в вашей конкретной комнате.
  • Термостаты
  • WiFi позволят вам контролировать температуру, где бы вы ни находились.
  • Лучистое тепло работает как ваша печь. Если вы установите его на 73F, он будет нагреваться, пока не достигнет этой температуры, а затем отключится, пока не станет достаточно холодным, чтобы снова работать.
  • Кроме того, вы можете использовать программируемый термостат для нагрева только тогда, когда он вам нужен. Скажем, перед тем, как встать утром в душ. Затем вы можете установить его на гораздо более низкую температуру в остальную часть дня.

Так что инвестируйте в программируемый или WiFi-термостат для экономии энергии и затрат в долгосрочной перспективе.

Наилучший способ управлять использованием энергии вашего теплого пола — это использовать программируемый термостат. Эти термостаты можно запрограммировать на обогрев пола только в то время дня, когда система будет использоваться, и они учатся компенсировать время нагрева вашей конкретной комнаты.Более того, термостаты Wi-Fi позволят вам контролировать температуру, где бы вы ни находились. Поэтому инвестируйте в программируемый или WiFi-термостат для экономии энергии и затрат в долгосрочной перспективе.

Купить углеродную пленку и установить самостоятельно

Углеродная пленка LARX Цена без НДС Счетчик
Карбоновая пленка LARX, 100 Вт / м², ширина 0,5 м, цена за 1 м длины 8 €
Карбоновая пленка LARX, 180 Вт / м², ширина 0.5 м, цена за 1 м длины 8 €
Эластичная углеродная пленка LARX, 150 Вт / м², ширина 0,5 м, цена за 1 м длины 12 €
Положение об углеродной пленке Цена без НДС Счетчик
Термостат LARX LCD, упаковка 1 шт. 50 € 01 штука2 штуки3 штуки4 штуки5 штук6 штук7 штук8 штук9 штук10 штук11 штук12 штук13 штук14 штук15 штук16 штук18 штук19 штук20 штук
Термостат LARX Wi-Fi (умный), в упаковке 1 шт. 100 € 01 штука2 штуки3 штуки4 штуки5 штук6 штук7 штук8 штук9 штук10 штук11 штук12 штук13 штук14 штук15 штук16 штук17 штук18 штук19 штук20 штук
Рассчитать необходимый материал
Необходимый материал Цена без НДС Счетчик
Кабель питания 2.5 мм² — коричневый, длина 50 м 67 € 01 рулон2 рулона3 рулона4 рулона5 рулонов6 рулонов7 рулонов8 рулонов9 рулонов10 рулонов11 рулонов12 рулонов13 рулонов14 рулонов15 рулонов16 рулонов17 рулонов18 рулонов19 рулонов20 рулонов
Кабель питания 2,5 мм² — синий, длина 50 м 67 € 01 рулон2 рулона3 рулона4 рулона5 рулонов6 рулонов7 рулонов8 рулонов9 рулонов10 рулонов11 рулонов12 рулонов13 рулонов14 рулонов15 рулонов16 рулонов17 рулонов18 рулонов19 рулонов20 рулонов
Кабель питания 1,5 мм² — коричневый, длина 50 м. 40 € 01 рулон2 рулона3 рулона4 рулона5 рулонов6 рулонов7 рулонов8 рулонов9 рулонов10 рулонов11 рулонов12 рулонов13 рулонов14 рулонов15 рулонов16 рулонов17 рулонов18 рулонов19 рулонов20 рулонов
Кабель питания 1,5 мм² — синий, длина 50 м. 40 € 01 рулон2 рулона3 рулона4 рулона5 рулонов6 рулонов7 рулонов8 рулонов9 рулонов10 рулонов11 рулонов12 рулонов13 рулонов14 рулонов15 рулонов16 рулонов17 рулонов18 рулонов19 рулонов20 рулонов
Прочная изолента для кромок 5 см, рулон 30 м 8 € 01 рулон2 рулона3 рулона4 рулона5 рулонов6 рулонов7 рулонов8 рулонов9 рулонов10 рулонов11 рулонов12 рулонов13 рулонов14 рулонов15 рулонов16 рулонов17 рулонов18 рулонов19 рулонов20 рулонов
Бутиловая лента для резки и изоляции разъемов, ширина 5 см, длина 20 м 30 € 01 рулон2 рулона3 рулона4 рулона5 рулонов6 рулонов7 рулонов8 рулонов9 рулонов10 рулонов11 рулонов12 рулонов13 рулонов14 рулонов15 рулонов16 рулонов17 рулонов18 рулонов19 рулонов20 рулонов
Зажимные клещи, в упаковке 1 шт. 50 € 01 штука 2 штуки 3 штуки
Зажим-соединитель для углеродной пленки, упаковка 20 шт. 12 € 01 пакет2 пакета3 пакета4 пакета5 пакетов6 пакетов7 пакетов8 пакетов9 пакетов10 пакетов11 пакетов12 пакетов13 пакетов14 пакетов15 пакетов16 пакетов17 пакетов18 пакетов19 пакетов20 пакетов
Зажимы для угольной фольги и соединительных проводов, в упаковке 50 шт. 5 € 01 пакет2 пакета3 пакета4 пакета5 пакетов6 пакетов7 пакетов8 пакетов9 пакетов10 пакетов11 пакетов12 пакетов13 пакетов14 пакетов15 пакетов16 пакетов17 пакетов18 пакетов19 пакетов20 пакетов
Сетка заземления 1 x 2 м для заземления углеродной пленки в ванных комнатах, упаковка 1 шт. 12 € 01 штука 2 штуки 3 штуки 4 штуки 5 штук 6 штук 7 штук 8 штук 9 штук 10 штук
LARX УГЛЕРОДНАЯ ПЛЕНКА.COM-лента, в упаковке 1 шт. 5 € 01 штука 2 штуки 3 штуки 4 штуки 5 штук 6 штук 7 штук 8 штук 9 штук 10 штук
Доставка в ЕС (за пределами ЕС индивидуальные цены) 69 € бесплатно69 €

Системы напольного и потолочного отопления — нагревательные пленки из углеродной ткани

Как работает система лучистого (инфракрасного) обогрева?

По тому же принципу, что и Солнце.Все мы знаем, что теплый воздух течет вверх. Но лучистое инфракрасное тепло, создаваемое углеродной пленкой, в отличие от конвекционного (обычного радиатора, который нагревает воздух), распространяется во всех направлениях и нагревает предметы в комнате. Сначала он нагревает людей, затем стены или мебель. Воздух нагревается от теплых предметов. Лучистое отопление более комфортно для людей, чем конвекционное. И еще больше экономии.

Когда окупается использование углеродной пленки?

Решение на основе LARX CARBON-FILM.Систему отопления COM лучше всего выбирать для ремонта и особенно для новых хорошо утепленных зданий, желательно еще на этапе проектирования, когда можно учесть и удовлетворить все требования. Это способ гарантировать ваше удовлетворение во всех отношениях.

Почему углеродная пленка лучше обычных теплых полов на водной основе?

Стоимость эксплуатации углеродной пленки ниже, вам не понадобится ни газовый, ни электрический бойлер, ни тепловой насос.Это исключает возможность использования оборудования, требующего регулярного обслуживания. Вы не должны думать ни о ремонте дымохода, ни о сантехнике. Большим преимуществом является более простая установка и точное регулирование.

Почему следует выбирать углеродную пленку, а не нагревательный кабель?

  1. Полосы Carbon Film распределяются по полу равномерно, без промежутков, поэтому передача тепла к поверхности пола эффективна и по всей площади пола.Если есть нагревательный кабель (или нагревательный мат), всегда можно почувствовать, где изгиб кабеля — чередуются горячие и холодные места.
  2. Нагревательный элемент углеродной пленки представляет собой углеродную поверхность, представляющую собой электрический резистор, нагреваемый за счет прохождения электрического тока. Поскольку углерод не является металлом, поверхность углерода не является источником электромагнитного смога.
  3. В отличие от нагревательного кабеля, наша система отопления может применяться под стяжкой или непосредственно под плавающим полом (деревянным, ламинатным или виниловым).Благодаря этому теплопередача происходит мгновенно, а регулирование происходит быстро и точно. Скорость и точность регулирования наиболее важны для снижения эксплуатационных расходов.
  4. В случае выхода из строя углеродная пленка, нанесенная непосредственно под плавающий пол, всегда легко доступна.
  5. Полоски углеродной пленки соединены параллельно. Это означает, что в случае повреждения все ленты из углеродной пленки в помещении сохраняют работоспособность без каких-либо ограничений.
  6. Благодаря максимальному использованию поверхности пола тепловые потери помещения могут быть компенсированы более низкой температурой поверхности нагрева.Меньшая разница температур между температурой поверхности пола и температурой окружающей среды означает меньшую тепловую нагрузку на конструкцию здания, более быстрое и точное регулирование и, прежде всего, больший комфорт для пользователя.
  7. По сравнению с нагревательным кабелем, наша система обогрева LARX CARBON-FILM.COM может использоваться в сборных конструкциях полов без использования процесса мокрого строительства. Это касается сборных домов и деревянных конструкций. Кроме того, установка углеродной пленки существенно проще и, следовательно, быстрее в строительстве.

Почему выбрать карбоновую пленку, а не электрический бойлер?

  1. Углеродная пленка является местным источником тепла — тепло вырабатывается непосредственно в месте, где это необходимо, поэтому отсутствуют потери при распределении и потери, вызванные передачей тепла между электричеством и водой. Углеродная пленка более эффективна.
  2. По сравнению с электрическим бойлером углеродная пленка нагревает всю поверхность пола и равномерно распределяет тепло.
  3. Регулирование каждой комнаты независимое, нет необходимости нагревать воду во всей системе из-за одной комнаты.
  4. Карбоновую пленку можно наносить непосредственно под плавающий пол. Регулировка происходит немедленно, и комната не перегревается.
  5. Углеродная пленка не имеет бойлера, поэтому можно лучше использовать пространство в техническом помещении.

Почему следует выбрать углеродную пленку, а не тепловой насос?

В настоящее время в случае семейного дома нормального размера с хорошей изоляцией (до 250 м 2 ) использование теплового насоса вместо углеродной пленки нецелесообразно.Фактические недостатки теплового насоса: более высокие первоначальные вложения, практически сопоставимые эксплуатационные расходы, более высокая частота отказов системы (компрессор, механические элементы), шум, потребность в ценном пространстве, меньший срок службы, необходимость в собственном времени инвестора, как во время его установка и эксплуатация.

Вообще, абсурдно устанавливать сложные системы отопления в современных домах с хорошей изоляцией, когда отопление может быть реализовано намного проще. Наша система отопления LARX CARBON-FILM.COM обеспечивает комфорт за счет лучистого отопления (теплый пол).В современных домах с низкими тепловыми потерями его эксплуатационные расходы очень близки к тепловому насосу. Проще говоря, хорошо изолированный семейный дом отапливается при нормальной работе, за счет тепла от электрических приборов (в основном, кухонь), за счет тепла человеческого тела и, конечно же, за счет нашей углеродной пленки для «теплых ног». Вы будете приятно удивлены его эксплуатационными расходами.

Подходит ли карбоновая пленка для квартир?

Конечно! Подходит для всех типов новых домов, а также для качественного ремонта.Часто очень выгодна низкая высота системы.

Подходит ли углеродная пленка для старого дома?

В зависит от способности дома удерживать тепло внутри. Возможно, потребуется использовать углеродную пленку с большей мощностью. Мы будем рады проанализировать ваш дом и подготовить проект системы отопления.

Подходит ли углеродная пленка под ПВХ, паркетные полы, деревянные или пластиковые полы, плитку, винил, ковры?

Да, наша система отопления может быть установлена ​​под любым полом, если она сертифицирована для теплого пола.Под всеми этими покрытиями он будет работать надежно и эффективно.

Что, если мы (или наши соседи) затопим наш дом?

Мы выполняем все установки профессионально и в соответствии со строжайшими стандартами защиты системы отопления.

Не повредит ли мой пол?

Углеродная пленка не нагревается до температуры, которая может повредить напольное покрытие. Его максимальная температура также контролируется термостатом с датчиком температуры пола.

Безопасна ли углеродная пленка для моего здоровья?

Тепло в основном такое же, как солнечное. По сравнению с конвекционным отоплением (радиаторами) в воздухе присутствует меньше вредных микроорганизмов из-за его более низкой температуры.

Какие длины волн излучает углеродная пленка?

Углеродные пленки в принципе представляют собой низкотемпературный инфракрасный излучатель (около 20-50 ° C). Излучение — это передача электромагнитной энергии в виде волн разной длины.Это вызвано возбуждением частиц. Углеродные пленки не излучают видимого излучения. Инфракрасные волны, в которых они излучают, больше, чем видимый свет. Длина волны инфракрасного излучения составляет от 760 нанометров до 1000 микрон. Длина волны углеродной пленки составляет около 10 микрон. Однако на это значение влияет множество факторов, в основном в зависимости от напольного покрытия. Согласно закону сдвига Вина, чем выше температура, тем короче длина волны максимальной интенсивности.

Почему я считаю это дешевле, чем другие системы отопления?

Потому что дешевле — дешевле, чем большинство других способов отопления.При рассмотрении критических параметров, таких как инвестиционные и эксплуатационные расходы, скорость и метод установки, точное и простое регулирование, отсутствие отказов, отсутствие обслуживания, отсутствие дымохода и его ревизий, отсутствие газа, теплообменника или другого крупного оборудования в вашем доме — вы получите не найти сопоставимой и столь же хорошей альтернативы сегодняшнему современному жилью.

Потребление энергии 180-300В
инфракрасного теплого пола пленки

низкое

Электротермальный пленочный инфракрасный теплый пол с низким энергопотреблением / 180-300 Вт

Преимущества электрического теплого пола


Электрический теплый пол — это удобный, эффективный и экономичный способ обогрева дома.


В отличие от обычных радиаторов, в которых для обогрева дома используются потоки воздуха, в электрическом напольном отоплении используется лучистое тепло. Это естественный поиск самых холодных предметов и людей в комнате, мягко их согревая. В свою очередь, это означает, что в помещении нет температурных перепадов. Также нет необходимости в некрасивых радиаторах, а значит, вы сможете использовать дополнительную площадь пола.


Лучистое тепло, иногда известное как инфракрасное отопление, является высокоэффективным методом обогрева вашего дома.Система не имеет движущихся частей, поэтому ее легко обслуживать, и ее можно использовать под любыми напольными покрытиями.

TTWARM — мировой лидер в области технологии низкотемпературных систем лучистого отопления.
TTWARM инвестировала 5 миллионов долларов США в создание высокотехнологичного предприятия с рядом колледжей и университетов, а также корпорацией DuPont Соединенных Штатов и другими исследовательскими институтами для сотрудничества.
Продукт полностью автоматизирован в производстве, чтобы гарантировать стабильность работы продукта.

Широкий спектр применения:

Применимо к общей электрической нагревательной пленке для всей строительной среды и может быть непосредственно положен на диван, матрас, может делать нагреватель в качестве нагревательного матраса, нагревательный нефритовый матрас из углеродного волокна, подушки, автомобильные коврики, нагревательные коврики для стола, нагревательные грелки, одежда и т.д ..

Промышленное поле может также использоваться для теплоизоляции, изоляции водопроводных и нефтепроводов. А также автострада, пандус, поворот, стадион, взлетно-посадочная полоса аэропорта и другие способы таяния снега и сохранения тепла.

Существует множество производных:

Производные электротермической пленки из углеродного волокна включают: нагревательные обои из углеродного волокна, гибкую нагревательную фреску из углеродного волокна, гибкую нагревательную завесу из углеродного волокна, физиотерапевтический инструмент из углеродного волокна и так далее.

FAQ

Может ли это повредить мой пол?

Пленки в полу не выдерживают экстремальных температур.Температуру можно регулировать и регулировать для соответствующего напольного покрытия.

Вредны ли нагревательные пленки для здоровья человека (инфракрасное излучение)?

Нет, это не так. Эта система обогрева очень похожа на тепло, выделяемое Солнцем.

Почему для пола выбирают нагревательную пленку, а не нагревательный кабель?

Нагревательная пленка равномерно распределена в полу (без зазоров), а это значит, что она лучше передает тепло на поверхность пола.Температурный контроль также более точен. Греющий кабель можно прокладывать только в бетонном слое. Устанавливается нагревательная пленка непосредственно под полом со всеми видами напольных покрытий (кроме плитки). Кроме того, монтаж пленки намного проще в принципе, а также быстрее с точки зрения строительства вашего дома.

Сколько ежемесячно эксплуатируются пленочные теплые полы? — «Теплый пол вашего теплого комфорта www.heatingfloor.eu» ®

Сколько я буду платить за использование системы теплых полов из пленки?

Это первый вопрос, который вы можете задать при выборе системы отопления для своего дома.

В этой статье вы найдете ответ, потому что мы сравнили две системы отопления — инфракрасную пленочную систему теплых полов DAEWOO ENERPIA и систему отопления с инверторным кондиционером.

Следует учитывать следующие факторы, которые могут повлиять на результат:

  • Размер номера;
  • Утепление помещений;
  • Напольное покрытие;
  • Температура в помещении и на улице и т. Д.

У нас было две одинаковых комнаты с одинаковой изоляцией на одном этаже в одном здании 30-го размера.6 кв.м и с такими же другими условиями.

В течение 6 дней отапливалась 1 комната с помощью инфракрасной системы теплых полов DAEWOO ENERPIA.

Квартира с электрическим пленочным теплым полом

А другая — с инверторным кондиционером Daikin.

Эксперимент проводился без использования других систем отопления.

Начальная температура 14 ° С

Термостат и кондиционер настроены на температуру 22 ° С

Средняя ночная температура — 0-3 ° С, Средняя дневная — 5-8 ° С

Здесь мы видим результат:

ИНФРАКРАСНАЯ ПЛЕНКА НАПОЛЬНОГО ОТОПЛЕНИЯ

DAEWOO ENERPIA

ИНВЕРТОР КОНДИЦИОНЕРА

Daikin FTX 35 СП

Размер номера — 30.6 кв.м.Отопительная площадь — 13 кв.м.

Тепловая мощность — 3,5 кВт

Продолжительность работы — 120 часов

Общее потребление энергии — 52,5 кВтч

Среднее потребление энергии — 0,44 кВтч

Стоимость системы отопления с установкой — 616 €

Площадь номера — 30,6 кв.м. Площадь обогрева — 13 кв.м.

Тепловая мощность — 3,5 кВт

Продолжительность работы — 120 часов

Общее потребление энергии — 54 кВтч

Среднее потребление энергии — 0.45 кВтч

Стоимость системы отопления с установкой — 785 €

Сравнение результатов показывает, что инфракрасная пленочная система теплого пола потребляет почти такое же количество электроэнергии, что и современный инверторный кондиционер .

Но при этом у пленочного теплого пола есть существенных преимуществ:

  • Создает комфортное тепло в помещениях;
  • Без шума;
  • Нет воздушного потока;
  • Нет необходимости в профилактике и очистке фильтров;
  • Не зависит от температуры наружного воздуха;
  • Не сушит воздух;
  • Инфракрасное излучение создает благоприятный климат.

% PDF-1.4 % 243 0 объект > эндобдж xref 243 98 0000000016 00000 н. 0000003093 00000 н. 0000003178 00000 п. 0000003881 00000 н. 0000004243 00000 н. 0000004453 00000 п. 0000015789 00000 п. 0000016140 00000 п. 0000016337 00000 п. 0000024824 00000 п. 0000025040 00000 п. 0000025485 00000 п. 0000025705 00000 п. 0000025918 00000 п. 0000025944 00000 п. 0000025970 00000 п. 0000025996 00000 п. 0000026022 00000 п. 0000026048 00000 н. 0000026409 00000 п. 0000026901 00000 п. 0000027173 00000 п. 0000027503 00000 п. 0000029025 00000 п. 0000030279 00000 н. 0000030613 00000 п. 0000031689 00000 п. 0000032069 00000 п. 0000032276 00000 н. 0000050693 00000 п. 0000050993 00000 п. 0000051957 00000 п. 0000052588 00000 п. 0000052976 00000 п. 0000053049 00000 п. 0000053124 00000 п. 0000053207 00000 п. 0000054970 00000 п. 0000055152 00000 п. 0000055372 00000 п. 0000055650 00000 п. 0000057091 00000 п. 0000057469 00000 п. 0000057708 00000 п. 0000059374 00000 п. 0000060640 00000 п. 0000064225 00000 п. 0000072668 00000 п. 0000077688 00000 п. 0000077748 00000 п. 0000077983 00000 п. 0000080725 00000 п. 0000080935 00000 п. 0000081143 00000 п. 0000084364 00000 п. 0000084569 00000 п. 0000084828 00000 п. 0000088068 00000 п. 0000088283 00000 п. 0000088658 00000 п. 0000088852 00000 п. 0000091358 00000 п. 0000091563 00000 п. 0000091686 00000 п. 0000092769 00000 п. 0000092984 00000 п. 0000093075 00000 п. 0000093164 00000 п. 0000093272 00000 п. 0000093390 00000 п. 0000093507 00000 п. 0000094069 00000 п. 0000094125 00000 п. 0000094186 00000 п. 0000094275 00000 п. 0000094381 00000 п. 0000094509 00000 п. 0000094570 00000 п. 0000094659 00000 п. 0000094765 00000 п. 0000094893 00000 п. 0000094955 00000 п. 0000095044 00000 п. 0000095150 00000 п. 0000095264 00000 п. 0000095333 00000 п. 0000095422 00000 п. 0000095528 00000 п. 0000095642 00000 п. 0000095712 00000 п. 0000095781 00000 п. ~ s?

Глава 13: Энергоэффективность | Справочное руководство по здоровому жилищу

«Инженерия — это экономическая наука о сохранении энергии, кинетики и потенциала, обеспечиваемой и сохраняемой природой для использования человеком.Задача инженеров состоит в том, чтобы использовать эту энергию с максимальной выгодой, чтобы было меньше возможных потерь ».

Уильям А. Смит, 1908

Введение
Эффективное использование энергии может снизить стоимость отопления, вентиляции и кондиционирования воздуха, которые составляют значительную часть общей стоимости жилья. Затраты на электроэнергию повторяются из месяца в месяц, и их трудно уменьшить после того, как дом был спроектирован и построен. При разработке энергоэффективного дома или здания необходимо продумать системный подход.Планирование энергоэффективности включает рассмотрение того, откуда поступает воздух, как он обрабатывается и где он желателен в доме. Неправильное использование или установка уплотняющих и изоляционных материалов может привести к насыщению или удержанию влаги, способствуя росту плесени, бактерий и вирусов. Кроме того, токсичные химические вещества могут образовываться или содержаться в живой среде. Эти ошибки в строительстве могут привести к серьезной опасности для здоровья. Основные вопросы, которые необходимо сбалансировать при использовании системного подхода к энергоэффективности, — это стоимость и доступность энергии, долгосрочная доступность и устойчивость, комфорт и эффективность, а также здоровье и безопасность.

Energy Systems
Принятие разумных решений при проектировании, строительстве или обновлении жилья обеспечит не только более эффективное использование пространства, но также может значительно снизить счета за электроэнергию и помочь жителям избежать неблагоприятных последствий для здоровья. Систематическое планирование энергоэффективности также может помочь потенциальным домовладельцам получить право на ипотеку, поскольку более низкие счета за топливо приводят к снижению общих платежей за жилье и коммунальные услуги. Некоторые банки и кредитные союзы принимают это во внимание при выборе потенциальных домовладельцев для получения ипотеки.«Энергоэффективная» ипотека дает покупателям особые преимущества при покупке энергоэффективного дома.

Использование энергии и эффективность должны рассматриваться в контексте выбора типов топлива и устройств, расположения оборудования, размеров оборудования и систем резервного копирования, а также программного использования при принятии решений по отоплению помещений, нагреву воды, охлаждению помещений, остеклению окон, и освещение. Переменные использования, такие как чрезмерно длительное принятие душа, выключение света при выходе из комнаты или использование бытовой техники на полную или почти полную мощность, могут увеличивать или уменьшать потребление энергии в зависимости от занятости.Многие из этих требований можно оптимизировать на этапе проектирования жилья для нового строительства. Однако при реконструкции жилья часто бывает сложно внести изменения для повышения энергоэффективности. Консультации перед строительством с архитекторами и специалистами по энергетике могут привести к компромиссам, которые сохранят эстетику и особые аспекты жилища, сделав при этом соответствующие инвестиции в энергоэффективность.

За плохой дизайн и отсутствие надлежащей теплоизоляции жилищ уплачивается цена, как в долларах на счетах за коммунальные услуги, так и в комфорте жильцов.Планировка комнат и общая герметичность дома с точки зрения воздухообмена влияют на потребность в энергии. Кроме того, жильцам и владельцам домов часто приходится принимать относительно незначительные решения, влияющие на общее потребление энергии, такие как выбор осветительных приборов и лампочек и выбор настроек для термостатов. Покупка энергоэффективных приборов может сэкономить энергию, но наибольшее сокращение энергопотребления может быть получено в результате принятия важных решений, таких как учет R-ценности систем крыши, изоляции и окон.

R-значения
Термическое сопротивление (сопротивление материала тепловому потоку) оценивается по R-значению. Более высокие значения R означают большую изолирующую способность, что означает большую экономию энергии в домах и соразмерную экономию затрат. Таблица 13.1. — это руководство по выбору значений R, которые подходят для конкретного дома, в зависимости от климата, системы отопления дома и района, в котором он расположен.

Другой способ понять значение R — это рассматривать его как сопротивление тепловым потерям от более высокой внутренней температуры до наружной температуры через материал или оболочку здания (стены, потолок, кровля в сборе или окно).Общие потери тепла зависят от теплопроводности материалов, площади, времени и конструкции в доме.

Коэффициент R теплоизоляции зависит от типа материала, его толщины и плотности. При расчете R-значения многослойной установки добавляются R-значения отдельных слоев. Установка большего количества изоляции увеличивает R-ценность и сопротивление тепловому потоку.

Эффективность утепленной стены или потолка также зависит от того, как и где установлена ​​изоляция.Например, сжатая изоляция не будет обеспечивать свое полное номинальное значение R. Кроме того, общая R-ценность стены или потолка будет несколько отличаться от R-ценности самой изоляции, потому что некоторое количество тепла течет вокруг изоляции через стойки и балки. То есть общее значение R стены с изоляцией между деревянными стойками меньше, чем значение R самой изоляции, потому что древесина обеспечивает тепловое короткое замыкание вокруг изоляции. Короткое замыкание через металлический каркас намного больше, чем через стены с деревянным каркасом; иногда общая R-ценность металлической стены может составлять всего половину R-ценности изоляции.При тщательном проектировании это короткое замыкание можно уменьшить.

Начало страницы Крыши
Крыши представляют собой составные конструкции с составными R-значениями. Суммарное значение R для компонентов крыши, показанных на рис. 13.1 , составляет 14,54 (таблица 13.2) . Как правило, композитная структура со значением R композита более R 38 обеспечивает существенный барьер для потери тепла. Конечно, зимой температура наружного воздуха будет значительно варьироваться между такими местами, как Пенсакола, Флорида, и Фэрбенкс, Аляска, и повлияет на рентабельность дополнительной изоляции и строительства с использованием различных компонентов кровли (Таблица 13.2) .

Местоположение дома обычно является фиксированной переменной при расчете R-значений после покупки лота. Однако домовладелец должен учитывать ценность дополнительной изоляции, сравнивая ее стоимость с экономией, полученной в результате повышения энергоэффективности. Конструкция крыши, включая такие компоненты, как вентиляционные отверстия коньков и изоляционные материалы, очень важна и часто является одним из наиболее экономичных способов снижения затрат на электроэнергию.

Коньковые вентиляционные отверстия
Коньковые вентиляционные отверстия важны для крыш как минимум по трем причинам.Во-первых, коньковые форточки помогают снизить температуру в конструкции крыши и, как следствие, на чердаке и в жилом пространстве под ним. Во-вторых, коньковые вентиляционные отверстия и вращающиеся вентиляционные отверстия турбин помогают продлить срок службы кровельных материалов, особенно битумной черепицы и фанерной обшивки. В-третьих, вентиляционные отверстия помогают циркуляции воздуха и помогают избежать проблем с чрезмерной влажностью.

Вентиляторы чердака с приводом от вентилятора
Вентиляторы чердака — это небольшие вентиляторы, которые удаляют горячий воздух и снижают температуру чердака.Важны соответствующие приточные вентиляционные отверстия. Обычно такие форточки располагаются под карнизом дома. Для лучшей производительности вентилятор должен быть расположен рядом с пиком крыши.

Белая поверхность крыши
Белая поверхность крыши в сочетании с любыми из перечисленных выше мер значительно улучшит их характеристики. Белая поверхность отражает большую часть солнечного тепла и сохраняет на крыше намного холоднее, чем на обычной крыше.

Изоляция
Изоляция образует барьер для внешних элементов.Это может помочь обеспечить комфорт жильцов и энергосбережение в доме. Изоляция потолка повышает комфорт и снижает затраты на электроэнергию или природный газ для отопления и охлаждения. Например, использование изоляции R-19 в домах на Гавайях [3] может дать следующие результаты:

Уменьшите температуру воздуха в помещении на 4 ° F (-16 ° C) во второй половине дня.

Понизьте температуру потолка, возможно, более чем на 15 ° F (-9,4 ° C). Изоляция [радиационный барьер] может снизить температуру потолка с 101 ° F (38 ° C) при ярком солнце на острове Оаху до 83 ° F (28 ° C) (Рисунок 13.2) .

Уменьшите или устраните необходимость в кондиционере.

Экономия энергии, конечно, будет зависеть от цен на энергию. Окупаемость, обеспечиваемая дополнительной изоляцией или инвестициями в меры по энергосбережению, — это среднее количество времени, которое потребуется для возмещения первоначальных капитальных затрат в результате экономии на счетах за электроэнергию. Окупаемость от 3 до 5 лет может быть экономичной, потому что средний домовладелец так долго остается в доме. Однако критерии окупаемости могут варьироваться в зависимости от человека, и, например, арендаторы часто сталкиваются с дилеммой: они не хотят вносить улучшения, выгоды от которых они не могут полностью реализовать.Ниже описаны несколько альтернативных вариантов изоляции.

Для достижения максимального эффекта большое значение имеют способ установки и тип изоляции. Правильное размещение влагозащитных барьеров имеет важное значение. Если изоляция становится влагонасыщенной, ее устойчивость к потерям энергии значительно снижается. Барьеры от влаги должны быть установлены по направлению к жилой зоне, потому что в доме образуется значительное количество влаги в результате дыхания, приготовления пищи и сжигания топлива для отопления.

Изоляция из целлюлозы или стекловолокна — наиболее экономичная изоляция. Выдувные войлоки из целлюлозы или стекловолокна и стекловолокна схожи по стоимости и характеристикам. Может быть доступна изоляция из переработанной целлюлозы. Для наилучшей работы изоляция должна быть толщиной от 5 до 6 дюймов. Его можно устанавливать на чердаках новых и старых домов. Обычно это лучший выбор для каркасных потолков в новых домах, но установка в существующие каркасные потолки может быть дорогостоящей. Очень важно, чтобы этот тип изоляции был обработан на огнестойкость.

Пенопласт

(R-10, от 1,5 до 2 дюймов) обеспечивает большую изоляцию на дюйм, чем целлюлоза или стекловолокно, но также более дорогостоящий. Лучше всего там, где нельзя использовать другие утеплители, например, потолки с открытыми балками. Это применимо для нового строительства или при замене кровли в существующем доме. Два распространенных материала — полистирол и полиизоцианурат. Полистирол лучше подходит для влажных условий, а полиизоцианурат имеет более высокое значение R на дюйм (миллиметр). Однако некоторые из этих изоляционных материалов представляют серьезную опасность распространения огня.Их следует оценить, чтобы убедиться, что они покрыты огнестойкими материалами и соответствуют местным противопожарным и строительным нормам.

Изоляция излучающего барьера представляет собой светоотражающую пленку, устанавливаемую под настилом крыши как обычную кровельную обшивку. Эффективность излучающего барьера (рис. 13.2) зависит от его излучательной способности (относительной способности поверхности излучать тепло за счет излучения). Как правило, чем ярче фольга, тем лучше. Изоляция излучающего барьера сокращает количество тепла, излучаемого от горячей крыши к нижнему потолку.Его можно накинуть на стропила перед установкой крыши или прикрепить скобами к нижней стороне стропил. Для наилучшей работы блестящая сторона должна быть обращена вниз. Некоторые производители заявляют, что лучистый барьер предотвращает попадание на чердак до 97% солнечного тепла.

Изоляция стен
Как показано в Table_13.1 , имеет смысл изолировать потолок до высоких значений R. Изоляция стен должна варьироваться от R-11 в относительно мягких климатических зонах до R-38 в Новой Англии, на севере Среднего Запада, в районе Великих озер и в штатах Колорадо и Вайоминг в Скалистых горах.Требования к изоляции также различаются в пределах климатических зон в этих штатах и ​​областях (например, в горных районах и районах дальше на север может быть больше дней с температурой в градусах тепла). Та же самая логика установки изоляции применима как к потолку, так и к стенам: изоляция должна обеспечивать барьер для передачи тепла и влаги и накопления изнутри жилища, где температура обычно находится в диапазоне от 68 ° F до 72 ° F (от 20 ° C до 22 ° C). диапазон, по сравнению с гораздо более холодными или более высокими температурами на улице.Ключом к потере тепла является разница температур и времени, в течение которого происходит передача тепла по данной площади или поверхности. Выбор системы отопления, от газовой / масляной или теплового насоса до электрического сопротивления, также повлияет на окупаемость дополнительной изоляции стен из-за колебаний цен на энергетическое топливо. Для регионов, обозначенных как «холодные», особое внимание следует уделять выбору вида энергетического топлива; в частности, тепловой насос может оказаться непрактичным вариантом.

Домовладелец, изучающий дизайн и методы строительства, должен оценить ценность использования структурных изолированных панелей.Установка высокого уровня изоляции непосредственно на заводе на стеновые и потолочные элементы зданий делает их отличными барьерами для тепла и влаги. Эти интегрированные системы, при правильном использовании, могут сэкономить значительное количество энергии по сравнению с традиционными системами, построенными из бруса 2 x 4 или 2 x 6. Кроме того, встраивание энергоэффективных элементов (а также электрических, сантехнических и других элементов) непосредственно в ограждающую конструкцию здания на заводе может привести к экономии затрат на рабочую силу по сравнению с более традиционными методами строительства.

Изоляция пола
Теплый воздух расширяется и поднимается над окружающим более холодным воздухом. Этот процесс передачи тепла называется конвекцией. Более легкий теплый воздух поднимается вверх и, охлаждая, опускается, создавая конвекционный поток воздуха. Двумя другими процессами теплопередачи являются теплопроводность (кинетическая энергия, передаваемая от частицы к частице, например, в полу с водяным или электрическим подогревом) и излучение (лучистая энергия, излучаемая в виде волн или частиц, например, в камине или при раскаленном свете. нагревательный элемент).Утеплитель пола ограничивает все три режима потери тепла. Более теплый пол уменьшает разницу температур, которая вызывает конвекцию. Изоляция пола также напрямую препятствует прохождению и излучению более холодного воздуха под полом.

Batt Insulation
Преимущество изоляции пола заключается в добавлении дополнительной R-ценности без значительного увеличения стоимости. Более дешевая изоляция под полом, чем добавление пенопласта или изменение конструкции стены для обеспечения большей изоляции.

Как и стены, полости в полу должны быть полностью заполнены изоляцией — без зазоров, отсутствующей изоляции или пустот в полостях. Изоляция пола должна контактировать с черным полом и обеими балками. Во многих случаях покупка достаточного количества изоляции для заполнения всей полости стоит дополнительных затрат.

Объем изоляции пола, требуемый некоторыми нормами, может быть меньше доступного пространства. Например, толщина стекловолокна R-19 составляет 6 дюймов. Пол, обрамленный 2 x 8, имеет глубину около 7 ½ дюймов, а пол 2 x 10 — 9 ½ дюймов.Строитель, соблюдающий минимальный уровень изоляции норм, оставит дополнительное пространство, которое обеспечит большую потерю тепла. Чтобы избежать такой ситуации, ватин нужно вдавить в полость. При надлежащей поддержке это можно сделать. Пружинные металлические стержни обычно используются для удержания изоляции в верхней части полости пола. Еще один жизнеспособный вариант — использование пластиковых ремешков. Рисунок 13.3 показывает изоляцию из войлока, неправильно нанесенную на пол над подвальным помещением или подвалом.

Толщина типичных войлочных плит из стекловолокна может помочь проектировщику и строителю в создании системы пола, которая будет удобна пассажирам. Таблица 13.3 показывает список значений R вместе с соответствующей толщиной войлока. Отдельные марки могут отличаться на целых 1 дюйм.

Заполнитель полости
По словам Oikos, коммерческого веб-сайта, посвященного обслуживанию профессионалов, работа которых способствует экологичному проектированию и строительству, «покупка более толстого войлока может быть лучшим вариантом, чем попытка поднять более тонкий войлок в нужное положение. Затраты на материалы немного вырастут, но затраты на рабочую силу останутся прежними.Прикрепить изоляционную опору к нижней части балки пола будет проще. Это также может привести к более высокому качеству работы, потому что меньше шансов на сжатие или пропуски » (Рисунок 13.4) [4] .

В некоторых местах на балки пола обычно вешают пластиковую сетку. Монтажники кладут изоляцию на сетку перед укладкой черного пола. Однако подвешивание сетки приводит к провисанию живота. Утеплитель сжимается возле каркаса и проседает посередине. Сетка должна быть прикреплена к нижней части каркаса пола [4].

Каждый этап усиленной изоляции пола, от R-19 до R-30 или от R-30 до R-38, может сэкономить энергию в течение всего срока службы дома. Эта энергия означает экономию энергии, кратную первоначальным затратам на установку. Изоляция пола даст наибольшую экономию в более холодном климате; в умеренном климате целевой уровень изоляции должен зависеть от экономических соображений.

Изоляция с надувом
Система наддува позволяет строителю или изолятору полностью заполнить всю полость, даже вокруг труб, проводов и других приспособлений.Использование хорошо обученных монтажников принесет дивиденды в виде качества изготовления.

Двери
Сегодня существует бесконечное множество дверей, от металлических дверей с изоляцией или без нее до пустотелых и массивных деревянных. При правильной установке в подобранные рамы двери служат тепловым барьером для поддержания температуры в помещении. Качественные металлические двери с утеплителем лучше всего, если у них есть термический разрыв между внутренней и внешней металлическими поверхностями; это предотвращает передачу тепла с одной стороны на другую.

Стандартные двери
Поскольку двери занимают небольшую часть стены, их изоляция не так важна, как изоляция стен и потолков. При этом потеря тепла идет по пути наименьшего сопротивления; поэтому следует выбирать двери, которые функциональны и повышают энергоэффективность дома. Двери обычно имеют более низкие значения R, чем окружающие стены.

Штормовые двери могут добавлять R-1 к R-2 к R-значению существующей двери. Они являются ценным дополнением к дверям, которые часто используются и подвергаются воздействию холодного ветра, снега и других погодных условий.Экраны позволяют естественному бризу циркулировать воздух снаружи, а не полностью полагаться на кондиционирование воздуха, которое может быть энергоемким.

При рассмотрении вопроса о замене дверей выберите изолированные двери с пенопластом. Помимо изоляции, металлические двери обеспечивают хорошую безопасность, более плотно закрываются и меньше деформируются. Металлические двери также более звукоизолированы, чем обычные деревянные двери.

Раздвижные стеклянные двери
Раздвижные стеклянные двери эстетически привлекательны, но имеют очень низкие значения R и, следовательно, минимально энергоэффективны.Чтобы повысить энергоэффективность существующих раздвижных стеклянных дверей, домовладелец должен убедиться, что они плотно закрыты и защищены от атмосферных воздействий. Кроме того, тяжелые утепленные шторы с утяжелением, препятствующие воздушному потоку, могут сократить потери тепла через раздвижные стеклянные двери.

Установка двери
Двери должны быть установлены в соответствии с рекомендациями производителя. Необходимо следить за тем, чтобы двери были установлены таким образом, чтобы они не задерживали влагу и не допускали непреднамеренного попадания воздуха.Доступны многочисленные типы уплотнительных материалов, от пенопласта до пластика, металлических фланцев и магнитных полос.

Системы горячего водоснабжения
Бак для горячей воды можно изолировать для повышения его эффективности, если только потери тепла не используются в помещении, где он расположен. Для этого типа приборов доступна специальная изоляция, которая снижает потребление энергии, необходимой для подачи горячей воды, необходимой обитателям жилища. Конечно, любая труба, которая подвержена экстремальным температурам, также должна быть изолирована, чтобы уменьшить теплопотери.

Начало страницы Windows
Окна по своей природе прозрачны. Они позволяют жильцам дома видеть снаружи и переносить солнечный свет и тепло от солнца. Они делают пространство более приятным и часто обеспечивают освещение для задач, выполняемых в помещении. Эти желательные характеристики компенсируют теплопотери, особенно зимой. Попадание тепла летом через окна может быть нежелательным.

Вместо того, чтобы отказываться от них, важно разумно использовать окна и учитывать энергетические соображения при их дизайне и их изоляционных характеристиках (воздух, стекло, пластик или газовый наполнитель).В хорошем дизайне используется дневное освещение. Герметизация и герметизация стекол вокруг окон могут повысить комфорт и сэкономить электроэнергию. Окна Energy Star настоятельно рекомендуются. Меры по уходу за домом могут повысить эффективность сохранения тепла. Потеря тепла идет по пути наименьшего сопротивления: может помочь уплотнение, водонепроницаемые конструкции и пленки. Эти меры относительно трудоемки, от низкой до очень низкой по стоимости и могут быть вполне удовлетворительными для домовладельца, если они выполнены правильно. С другой стороны, нелегко найти идеальные материалы или даже запчасти для старых окон.

При работе со старыми окнами помните, что существует опасность попадания этилированной краски и распространения токсичной свинцовой пыли в рабочую зону. См. Свинцовый раздел Глава 5 , Загрязняющие воздух в помещении и токсичные материалы.

Конопатка и гидроизоляция
По данным Министерства энергетики США, конопатка и гидроизоляция имеют существенные хозяйственные преимущества в предотвращении потерь энергии или нежелательного тепловыделения.

Герметик
Герметик — это герметичный состав (обычно латекс или силикон), заполняющий трещины и отверстия.Перед нанесением нового герметика необходимо удалить старый герметик или остатки краски, оставшиеся вокруг окна, с помощью шпателя, жесткой кисти или специального растворителя. После удаления старого герметика можно нанести новый герметик на все стыки оконной рамы и стыка между рамой и стеной. Лучшее время для нанесения герметика — в сухую погоду, когда температура наружного воздуха выше 45 ° F (7,2 ° C). Низкая влажность важна во время нанесения, чтобы трещины не набухали от влаги. Также необходимы теплые температуры, чтобы герметик правильно схватился и приклеился к поверхности [5] .

Погодозащитные полосы
Погодные рамки представляют собой узкие куски металла, винила, резины, войлока или пены, которые герметизируют область контакта между неподвижными и подвижными частями оконного стыка. Они должны быть нанесены между створкой и рамой, но не должны мешать работе окна [6] .

Замена оконных рам
Характеристики теплопотерь и воздухонепроницаемость окна зависят от типа и качества оконной рамы.Доступные типы оконных рам: фиксированные, створчатые, двух- и одинарные, горизонтально-раздвижные, бункерные и навесы. Каждый тип различается по энергоэффективности.

Правильно установленные окна с неподвижным остеклением являются наиболее герметичным и недорогим выбором, но они не подходят для мест, требующих вентиляции. Воздухопроницаемость окон со створкой (которые открываются вбок с помощью ручных рычагов), окон с навесом (которые похожи на окна со створкой, но с петлями вверху) и окон бункера (окна с перевернутыми тентами с петлями внизу) являются умеренными.Двустворчатые окна, у которых есть верхняя и нижняя створки (часть окна, которая может сдвигаться), как правило, протекают. Преимущество окна с одинарным развешиванием перед окном с двойным подвесом состоит в том, что оно имеет тенденцию ограничивать утечку воздуха, поскольку в нем есть только одна движущаяся часть. Горизонтальные раздвижные окна подходят для небольших и узких пространств, но обеспечивают минимальную вентиляцию и наименее герметичны.

В зданиях с большими старыми окнами часто есть зоны для груза, которые скрывают противовесы, которые позволяют легко поднимать и опускать тяжелые окна.Эти области следует изолировать, чтобы уменьшить потери энергии.

Тонированные окна
Еще один способ экономии энергии — установка тонированных окон. Можно установить тонировку окон, которая не только сбережет энергию, но и предотвратит попадание вредного ультрафиолетового света в комнату и потенциально выцветание деревянных поверхностей, тканей и ковровых покрытий. Также доступны покрытия с низким коэффициентом излучения, называемые низкоэмиссионными покрытиями. Эти покрытия предназначены для конкретных географических регионов.

Снижение тепловых потерь и конденсации
Энергоэффективность окон измеряется с помощью их U-значений (мера теплопроводности) или их R-значений.Помимо нескольких исключений с высокой энергоэффективностью, R-значения окна находятся в диапазоне от 0,9 до 3,0. При сравнении различных окон рекомендуется ориентироваться на следующие рекомендации для значений R и U:

R- и U-значения основаны на стандартах, установленных Американским обществом инженеров по отоплению, охлаждению и кондиционированию воздуха [7] .

Значения R и U рассчитываются для всего окна, включая фрейм.

Значения R и U представляют собой окна одинакового стиля и размера.

Значение R окна в реальном доме зависит от типа материала остекления, количества слоев стекла, количества пространства между слоями и природы наполняющего их газа, а также теплопроводных свойств стекла. материалы каркаса и прокладки, а также герметичность, связанная с производством.

Для окон настоятельно рекомендуется рейтинг и одобрение Национального совета по рейтингам окон или эквивалентный рейтинг и одобрение [8] .

См. Раздел окон в Глава 6 , Конструкция корпуса.

Остекление
Остекление относится к вырезанию оконных стекол и их установке в рамы. Стекло традиционно было предпочтительным материалом для оконных стекол, но сейчас ситуация меняется. Доступно несколько новых материалов, которые могут повысить энергоэффективность окон. К ним относятся следующие:
Стекло с низким коэффициентом излучения (low-e) использует поверхностное покрытие, чтобы минимизировать передачу тепла через окно, отражая от 40% до 70% падающего тепла, позволяя полностью свету проходить через стекло.

Теплопоглощающее стекло специально тонировано, чтобы поглощать примерно 45% поступающей солнечной энергии; часть этой энергии проходит через стекло.

Отражающее стекло имеет отражающую пленку, которая снижает приток тепла за счет отражения большей части падающего солнечного излучения.

Пластиковые материалы для остекления, такие как акрил, поликарбонат, полиэстер, поливинилфторид и полиэтилен, прочнее, легче, дешевле и легче режется, чем стекло. Однако они менее долговечны и подвержены влиянию погодных условий больше, чем стекло.

Штормовые окна могут повысить энергоэффективность одинарных окон. Простейшим примером штормовых окон может быть пластиковая пленка, доступная в предварительно упакованных наборах, приклеенная к внутренней части оконной рамы. Поскольку это может повлиять на видимость и быть легко поврежденным, лучшим выбором будет прикрепление жестких или полужестких пластиковых листов, таких как оргстекло, акрил, поликарбонат или армированный волокном полиэстер, непосредственно к оконной раме или установка ее в каналах вокруг рамы на оконной раме. вне здания.При установке следует соблюдать осторожность, чтобы избежать ряби или пятен, которые могут ухудшить видимость.

Наслоение
Изоляционная способность однослойных окон минимальна, около R-1. Для повышения энергоэффективности окон можно использовать несколько слоев стекла. Окна с двойным или тройным остеклением имеют заполненные воздухом или газом пространства, соединенные с несколькими стеклами, которые сопротивляются тепловому потоку. Пространство между стеклами имеет решающее значение, поскольку слишком широкие (более дюйма) или слишком узкие (менее ½ дюйма) воздушные пространства допускают чрезмерную теплопередачу.Современные окна используют инертные газы, такие как аргон и криптон, для заполнения промежутков между стеклами, потому что эти газы гораздо более устойчивы к тепловому потоку, чем воздух. Эти газонаполненные окна дороже обычных стеклопакетов.

Материалы рамы и распорки могут быть алюминием, деревом, винилом, стекловолокном или комбинацией этих материалов, например, дерево, облицованное винилом или алюминием.

Алюминиевые рамы прочные и идеально подходят для оформления окон по индивидуальному заказу, но они проводят тепло и склонны к конденсации.Повреждения этих рамок можно избежать путем анодирования или нанесения покрытия. Их термическое сопротивление можно повысить, используя непрерывные пластиковые полосы между внутренней и внешней частью рамы.

Деревянные рамы превосходят алюминиевые рамы с точки зрения более высоких значений R, устойчивости к экстремальным температурам и устойчивости к конденсации. С другой стороны, деревянные рамы требуют значительного ухода в виде покраски или окрашивания. Неправильное обслуживание может привести к гниению или короблению.

Виниловые оконные рамы из поливинилхлорида доступны в широком диапазоне стилей и форм, могут быть легко настроены, имеют умеренные R-значения и могут иметь конкурентоспособные цены. Большие окна из виниловых рам укрепляются алюминиевыми или стальными прутьями. Виниловые окна следует выбирать только после рассмотрения проблем, связанных с использованием виниловых материалов и их газовыделением.

Рамы из стекловолокна имеют самые высокие значения R и не подвержены короблению, усадке, набуханию, гниению или коррозии.Стекловолокно не устойчиво к атмосферным воздействиям, поэтому его тоже следует красить. Некоторые рамы из стекловолокна полые; другие заполнены изоляцией из стекловолокна.

Распорки , разделяющие несколько оконных стекол в окне, используют алюминий для разделения стекол в многослойных окнах, но он проводит тепло. Кроме того, в холодную погоду тепловое сопротивление по краю такого окна ниже, чем в центре, что позволяет отводить тепло и конденсироваться по краям.

Сепараторы из вспененного поливинилхлорида , расположенные по краям рамы, уменьшают теплопотери и образование конденсата.Производители окон используют разделители из пенопласта, нейлоновые прокладки и изоляционные материалы, такие как полистирол и изоляция из минеральной ваты между стеклами внутри окон.

Другие опции
Шторы, ставни и шторы, используемые на окнах внутри дома, уменьшают теплопотери зимой и приток тепла летом. Прирост тепла летом также можно свести к минимуму, используя навесы, внешние ставни или ширмы. Перед принятием решения о замене окна следует подумать об этих рентабельных обработках окон.Принимая во внимание ориентацию, дневное освещение, накопление или отражение энергии солнечного света, а также материалы, используемые в доме и на внешней оболочке здания, можно уменьшить потери и приток тепла.

Солнечная энергия
Солнечная энергия — это форма возобновляемой энергии, доступная домовладельцам для отопления, охлаждения и освещения. Более энергоэффективные новые конструкции предназначены для хранения солнечной энергии. Реконструированные конструкции могут быть модернизированы для повышения энергоэффективности за счет улучшения изоляционных характеристик, улучшения воздушного потока и герметичности конструкции, а также повышения способности использовать солнечную энергию.Системы солнечной энергии бывают активными и пассивными. В то время как активные солнечные системы используют некоторый тип механической энергии для сбора, хранения и распределения солнечной энергии, пассивные системы используют материалы и элементы дизайна в самой структуре.

Активные солнечные системы
Активные солнечные системы используют устройства для сбора, преобразования и доставки солнечной энергии. Солнечные коллекторы на крышах или других поверхностях, обращенных на юг, могут использоваться для нагрева воды и воздуха и выработки электроэнергии. Активные солнечные системы могут быть установлены в новых или существующих зданиях, и их необходимо периодически проверять и обслуживать.Оборудование для активной солнечной энергии состоит из коллекторов, резервуара для хранения, трубопроводов или воздуховодов, вентиляторов, двигателей и другого оборудования. Плоские коллекторы (рисунок 13.5) можно размещать на крыше или на стенах. Обычно коллектор представляет собой сэндвич из одного или двух листов стекла или пластика и другого воздушного пространства над металлической пластиной поглотителя, которая окрашена в черный цвет для улучшения поглощения тепла. После сбора, когда энергия солнца преобразуется в тепло, она передается в резервуар для хранения жидкости.Нагретая жидкость проходит через змеевики в резервуаре для горячей воды, и тепло передается воде и, возможно, системе отопления. В большинстве систем горячего водоснабжения используется система коллектора жидкости, поскольку она более эффективна и менее затратна, чем система воздушного типа.

На юго-западе США солнечные водоемы на крыше стали популярными для солнечного охлаждения. Системы испарительного охлаждения зависят от испарения воды для понижения температуры воздуха. Было показано, что они более эффективны в сухом климате, чем в районах с чрезвычайно высокой относительной влажностью.

В определенных климатических условиях, например на Гавайских островах, использование солнечной энергии является экономически эффективным для обеспечения горячей водой. Некоторые строители даже включают его в стандартную комплектацию своих домов. Общая стоимость солнечных энергетических систем для домовладельца состоит из капитальных, эксплуатационных и эксплуатационных расходов. Реальная стоимость капитала может быть снижена за счет наличия налоговых льгот, предлагаемых на федеральном (для снижения федерального подоходного налога) и уровне штата.

Домовладельцы и строители могут получить налоговые льготы, поскольку они снижают общие первоначальные инвестиционные затраты на установку активных солнечных систем.Это основная часть общих затрат на использование солнечной энергии, поскольку затраты на эксплуатацию и техническое обслуживание невелики по сравнению с начальными затратами на систему.

Пассивные солнечные системы
Здания, спроектированные для использования пассивной солнечной энергии, имеют встроенные в конструкцию элементы, которые поглощают и медленно отводят солнечное тепло. В холодном климате конструкция позволяет солнечному свету и теплу накапливаться в конструкции, одновременно изолируя ее от холода. В теплом климате лучший эффект достигается за счет пропускания света и отвода тепла.Здание, использующее пассивные солнечные системы, может иметь на плане этажа следующие особенности:

  • Большие окна на южную сторону
  • Небольшие окна в других направлениях, особенно на северной стороне строения
  • Конструкции, позволяющие дневному свету и солнечному теплу проникать в основные жилые помещения
  • Специальное стекло для защиты от ультрафиолетового излучения
  • Строительные материалы, поглощающие и медленно повторно излучающие солнечное тепло
  • Конструктивные особенности, такие как выступы, перегородки и летнее затенение для предотвращения летнего перегрева.

Пассивная конструкция может быть системой прямого усиления, когда солнце светит прямо в здание, тем самым нагревая его и сохраняя это тепло в строительных материалах (бетон, каменные плиты перекрытия и каменные перегородки). В качестве альтернативы, это может быть система косвенного усиления, в которой тепловая масса расположена между солнцем и жилым пространством. Изолированное усиление — это еще один тип системы, которая отделена от основной жилой зоны (например, солярия или солнечной теплицы) конвективными контурами для кондиционирования пространства в жилом пространстве.

Energy Star — это программа, поддерживаемая и продвигаемая Агентством по охране окружающей среды США (EPA), которая помогает людям защищать окружающую среду за счет высочайшей энергоэффективности. Для человека, живущего в его или ее доме, выбор энергоэффективных решений может сэкономить семьям около одной трети их счетов за электроэнергию, с аналогичной экономией на выбросах парниковых газов, без ущерба для характеристик, стиля или комфорта. При замене товаров для дома ищите те, которые получили Energy Star; эти продукты соответствуют строгим нормам энергоэффективности, установленным EPA и U.С. Министерство энергетики. При поиске нового дома ищите тот, который получил одобрение Energy Star. Если вы планируете значительно улучшить свой дом, EPA предлагает инструменты и ресурсы, которые помогут вам спланировать и реализовать проекты по сокращению ваших счетов за электроэнергию и повышению домашнего комфорта [9] . Только в 2004 году американцы с помощью Energy Star сэкономили достаточно энергии, чтобы обеспечить электроэнергией 24 миллиона домов и избежать выбросов парниковых газов, эквивалентных выбросам от 20 миллионов автомобилей, при этом сэкономив 10 миллиардов долларов.

Проведение энергетического аудита
Энергетические аудиты могут помочь определить области, в которых можно сделать инвестиции в энергию, тем самым уменьшив энергию, используемую для освещения, обогрева, охлаждения или удовлетворения других потребностей жителей жилья. Инспекция может оценить соответствие или соответствие кодексам энергосберегающих мер, включая принятые или письменные стандарты. Например, если новое дополнение требует эквивалентной изоляции R-19 в потолках, это может быть подтверждено в процессе проверки.В то время как аудит обычно носит информационный характер, инспекция должна подтвердить, что материалы и качество изготовления позволили создать структуру, защищающую людей от таких элементов, как дождь, снег, ветер, холод и жара. Потенциально опасные ситуации внутри конструкции следует оценивать при осмотре. Общая цель жилищной инспекции в случае энергоэффективности — выявить потенциально опасные условия и помочь создать условия, при которых здоровье и благополучие жителей могут быть улучшены, а не подвергнуты риску.

Инспектор жилищного фонда должен знать, что существуют различия (иногда весьма значительные различия) в градусах нагрева или охлаждающих нагрузках, а также в условиях относительной влажности в пределах данных регионов. Местный и региональный рельеф, а также условия участка могут влиять на температуру и влажность.

На многочисленных веб-сайтах, перечисленных в разделе «Дополнительные источники информации» этой главы, обсуждаются процедуры проведения энергетических аудитов. Местные и региональные коммунальные предприятия часто предлагают услуги аудита и помогают в выборе экономически эффективных природоохранных мер для определенных районов США.

Список литературы

  1. Национальная лаборатория Лоуренса Беркли. Проект изоляции Energy Star: рекомендации по R-ценности. Беркли, Калифорния: Национальная лаборатория Лоуренса Беркли; 2004. Доступно по URL: http://enduse.lbl.gov/Projects/Rvalue.html.
  2. RoofHelp.com. R-значение. Форт-Уэрт, Техас: RoofHelp; 1999. Доступно по адресу: http://www.roofhelp.com/Rvalue.htmExternal
  3. .
  4. Штат Гавайи, Департамент бизнеса, экономического развития и туризма, Отдел энергетических ресурсов и технологий.Утепление потолка. Гонолулу, Гавайи: штат Гавайи, Департамент бизнеса, экономического развития и туризма; без даты.
  5. Ойкос. Заливка пола ватным утеплителем. Energy Source Builder 1995 [апр]; 38. Доступно по URL: http://oikos.com/esb/38/floorinsulation.html.
  6. Министерство энергетики США. Энергосберегающие: информационные бюллетени. Вашингтон, округ Колумбия: Министерство энергетики США; без даты. Доступно по URL: http://www.eere.energy.gov/consumer/tips/pdfs/energy_savers.pdf [PDF — 3,21 МБ].
  7. Министерство энергетики США.Достижения в остеклении окон. Вашингтон, округ Колумбия: Министерство энергетики США; 1994.
  8. Американское общество инженеров по отоплению, холодильной технике и кондиционированию воздуха (ASHRAE). Стандарты; без даты. Атланта: Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха. Доступно по адресу: http: //www.ashrae.orgExternal.
  9. Национальный Рейтинговый Совет Фенестрации. Найдите рейтинги энергоэффективности. Сильвер-Спринг, Мэриленд: Национальный совет по рейтингу окон; без даты. Доступно по URL: http: // www.nfrc.org/windowshop/surveybegin.aspx.
  10. Агентство по охране окружающей среды США. Что такое Energy Star? Вашингтон, округ Колумбия: Агентство по охране окружающей среды США; без даты. Доступно по URL: http://www.energystar.gov/index.cfm?c=about.ab_indexExternal.

Дополнительные источники информации

Альянс за энергосбережение. Экономьте энергию дома. Доступно по URL: http://www.ase.org/section/_audience/educators/edsavhome/.

Christian J, Kosnay J. Home Расчет R-значений для всей стены в сети.Energy Magazine Online, ноябрь / декабрь 1999 г.

Управление энергетической информации. Доступно по адресу: http: //www.eia.doe.govExternal.

Экологические солнечные системы. Доступно по URL-адресу: http://www.environmentalsolarsystems.com/systems/.

Enviro $ en $ e: здравый смысл для решения экологических проблем.
Доступно по URL: http://es.epa.gov/.

Флорида Сила и Свет. Оболочка здания: утеплитель. Доступно по адресу: http://www.fpl.com/business/savings/energy_advisor/PA_45.html.

Флорида Сила и Свет. Интернет-опрос об энергопотреблении дома. Доступно по URL-адресу: http://www.fpl.com/residential/ohes/online_home_energy_survey.shtml.

Национальная ассоциация государственных служащих в сфере энергетики. Доступно по адресу: http: //www.naseo.orgExternal.

Nexus Energyguide. Доступно по адресу: http://www.energyguide.com/default.asp.

Технологический центр зданий Национальной лаборатории Ок-Ридж. Доступно по URL: http://www.ornl.gov/ORNL/BTC.

Ойкос.Рейтинги R для всей стены. Строитель Источника Энергии №47; Октябрь 1996 г. Доступно по адресу: http://oikos.com/esb/47/wholewall.html.

RoofHelp.com. R-значение. Доступно по URL-адресу: http://www.roofhelp.com/Rvalue.htmExternal.

Комитет Сената по энергетике и природным ресурсам. Основные положения Закона об энергетической политике 2003 г. и Закона о налоговых льготах 2003 г. Доступно по URL: http://energy.senate.gov/news/rep_release.cfm?id=203374.

Трандт Дж. Американцы хотят энергоэффективности.Доступно по URL: http://healthandenergy.com/energy_efficiency.htm.

Министерство энергетики, энергоэффективности и возобновляемых источников энергии США.
Строительный конверт. Доступно по URL: http://www.eere.energy.gov/EE/buildings_envelope.html.

Министерство энергетики США, Управление энергетической информации.
Доступно по URL: http://eia.doe.gov/External.

Агентство по охране окружающей среды США. Доступно по URL: http: //www.epa.govExternal.

Агентство по охране окружающей среды США, Energy Star.Доступно по адресу: http: //www.energystar.govExternal.

Уилсон А. Тепловая масса и R-значение: понимание запутанной проблемы. EBN 1998 7 (4). Доступно по URL-адресу: http://www.buildinggreen.com/features/tm/thermal.cfm.

Всемирная ассоциация энергоэффективности. Доступно по адресу: http://www.weea.org/External.

Таблица 13.1. Экономически эффективные изоляционные R-значения для существующих домов [a; 1]

Таблица 13.2. R-значения компонентов крыши [3]

Таблица 13.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *