Какие бывают генераторы: Виды генераторов и особенности их выбора

Содержание

Виды генераторов и особенности их выбора

Нас часто спрашивают, «как выбрать генератор?», «какие виды генераторов бывают?», «чем отличаются разные типы генераторов?». В этой статье мы подробно рассмотрим различные виды генераторов, их отличия и последовательность правильного выбора. Как ясно из названия генератор (электрогенератор) — это электрическая машина, использующаяся для получения электрической энергии за счет преобразования в неё химической энергии топлива или механической энергии вращения (химическая энергия топлива — в механическую энергию вращения, а та — в электрическую). Однако сегодня под генератором чаше всего подразумевают полноценный бензогенератор или дизельгенератор. О них и пойдёт речь.

Виды генераторов по их назначению и использованию

Когда человек выбирает транспортное средство для личного передвижения, он сначала выбирает не вид топлива (дизель или бензин), а выбирает тип транспорта (автомобиль или мотоцикл). Такая же ситуация и с генераторами — прежде всего они отличаются не по топливу, а по назначению, по типу охлаждения.

Бытовые (портативные) генераторы:

Небольшие, лёгкие, недорогие генераторы с воздушным охлаждением (как мотоцикл). Для коротких запусков, для кратковременной работы. В свою очередь, бытовые портативные генераторы могут отличаться между собой:

Профессиональные (стационарные) генераторы:

Тяжелые, надежные и долговечные. Рассчитаны на долговременную работу, большие интервалы между техническими обслуживаниями и низкий расход топлива (как промышленный автомобиль или грузовик).

Обратите внимание, если портативные (бытовые) генераторы бывают на любом виде топлива, но небольшой мощности, то стационарные в основном дизельные. Таким образом, если вам нужен генератор мощностью 30 кВт, то он однозначно будет дизельным, а если вам нужен бензиновый, то он будет точно портативным. Отдельно можно упомянуть маломощные инверторные генераторы, которые бывают только бензиновыми и, естественно, портативными.

Виды генераторов и их отличия по типу топлива

Если взять два одинаковых генератора, дизельный и бензиновый (естественно, оба они будут портативными, так как стационарных бензиновых генераторов не существует), то их отличия за счет разного типа топлива будут следующими:

  • По габаритам: дизельный генератор будет более массивным, более тяжелым.
  • По расходу топлива: бензиновый генератор более прожорлив.
  • По запуску в холодное время: бензиновый генератор запускается лучше.
  • По долговечности: дизельный в два-три раза более долговечен.
  • По стоимости: Цена бензинового в два раза ниже.

Практика показывает, что в генераторах малой мощности, до 3-4 кВт наиболее часто используются бензиновые двигатели, а с ростом мощности всё более популярными становятся дизельные.

Виды генераторов по напряжению

  • Однофазные генераторы, вырабатывающие 220В или 230В (европейский стандарт) могут работать только с однофазными приборами. Однофазные генераторы чаще всего портативные и бензиновые, небольшой мощности. Максимальная мощность однофазных генераторов — 10 кВт.
  • Трехфазные генераторы, вырабатывающие 380В или 400В (европейский стандарт) могут работать с трехфазными потребителями и, частично, пофазно, питать однофазных потребителей. Трехфазные генераторы чаще всего дизельные.
  • Высоковольтные генераторы — большие мощные дизельные электростанции, мощностью, чаще всего от 1000 кВт, для специфических промышленных решений.

Генераторы по типу запуска

  • Ручной запуск — запуск стартерным шнуром, как у бензопилы. Дергаем шнур — заводится генератор. Для запуска генераторов мощностью 6 кВт и более, оснащенных только ручным запуском нужно иметь хорошую физическую форму. 
  • Электростартер — запуск кнопкой, ключом, или удаленным сигналом.
  • Автозапуск — расширение электростартерной версии, запуск автоматический по сигналу от АВРа, при пропадании сети.

Итак, в зависимости от задачи и потребности удалось определить, какой нужен генератор: маленький портативный бензиновый, средний портативный дизельный или большой стационарный, естественно, дизельный. После этого (в зависимости от задач) был определен тип запуска и напряжение. Последнее что стоит сделать, это определить исполнение (открытые, в кожухе или в контейнере) и марку (производителя). Сделанный таким образом выбор наверняка будет успешным.

Дизельные, бензиновые, газовые, портативные, передвижные

Использование энергетических ресурсов нуждается в преобразовании одних форм энергии в другие. Устройства, в которых такое преобразование происходит, являются преобразователями энергии. Данное преобразование, как правило, включает в себя промежуточную стадию: энергия простого носителя предварительно преобразуется в механическую, а после этого полученная механическая энергия преобразуется в электрическую энергию.

Энергетический преобразователь, преобразующий механическую энергию в электрическую энергию или наоборот, называется электрической машиной. Электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию, называются электрическим генератором. Любая электрическая машина является электромагнитным устройством, которое включает в себя взаимозависимые магнитные и электрические цепи.

Если встал вопрос, как выбрать электростанцию или генератор, то нужно учитывать множество факторов:

  • мощность,
  • время непрерывной работы,
  • вид топлива,
  • производителя и т.д.

Ниже приведена классификация генераторов по различным параметрам.

По типу первичного двигателя промежуточной стадии электрические генераторы бывают:

  • турбогенераторами, приводимыми в движение газотурбинным двигателем;
  • гидрогенераторами, приводимыми в движение гидравлической турбиной;
  • дизель-генераторами, бензо-генераторами, газогенераторами, приводимыми в движение двигателем внутреннего сгорания;
  • ветрогенераторами, приводимыми в движение энергией ветра.

По виду выходного электрического тока бывают электрические генераторы:

  • Постоянного тока. Их принцип действия основан на законе электромагнитной индукции, открытой Майклом Фарадеем в 1831 году, — электродвижущая сила индуцируется в прямоугольном контуре, который находится в однородном вращающемся магнитном поле. Преобразование в постоянный ток осуществляется посредством электромеханического выпрямителя – коллектора.
  • Переменного тока. В основе их действия также лежит закон электромагнитной индукции. Поток электрических зарядов вызван перемещением электрического проводника. Это движение создает разность напряжений между двумя концами провода, что в свою очередь заставляет двигаться электрические заряды, таким образом, генерируя электрический ток.

По мобильности:

  • Портативные (переносные). Такой тип генератора является одним из наиболее эффективных и удобных решений вопроса резервного электроснабжения загородного дома, обеспечения электричеством в туристическом походе, улучшения условий проживания в длительных путешествиях и экспедициях. Если необходим независимый источник питания, и вы не знаете, как выбрать генератор бензиновый, то первое, что нужно учесть, что его мощность колеблется в пределах от 0,5 до 12 кВт и для крупных объектов не подходит. Хотя малый вес и экономичность делает его популярным резервным источником питания. Эти генераторы оснащены двигателями с воздушным охлаждением.
  • Передвижные. Для такого типа генератора не требуется специальное помещение и монтаж. Оборудование имеет постоянную готовность к срочной эксплуатации. Установка на шасси позволяет доставить оборудование (прицепную электростанцию) в труднодоступную точку, где нет электричества.
  • Стационарные генераторы и электростанции. Применяются для бесперебойной подачи электрической энергии значительных мощностей. Не подлежат транспортировке и имеют постоянное место нахождения. Используются на строительных площадках, различных промышленных объектах непрерывного производства, в торговых центрах и проч. Такие генераторы имеют жидкостное охлаждение с использованием антифриза (радиаторное охлаждение).

В свою очередь стационарные генераторы бывают закрытого и открытого типа (закрытый тип имеет шумопоглощающий всепогодный кожух, открытый тип может быть установлен в помещении, где нет ограничений по уровню шума).

По назначению:

  • Бытовые. Из-за способности эффективного обеспечения электрической энергией не более 8 часов в сутки, бытовые генераторы используются как резервный источник при кратковременных отключениях электроэнергии централизованными линиями электропередач на дачах, в загородных домах, на небольших производствах. Зачастую эти устройства бывают бензиновыми, весят от 25 до 200кг, просты в обслуживании, имеют небольшие габариты.
  • Профессиональные. Предназначены для интенсивного использования на крупных объектах (больницах, супермаркетах, стройплощадках, промышленных предприятиях), а также в жестких условиях эксплуатации. Могут работать в качестве как основных, так и резервных источников электроэнергии. Имеют большой моторесурс.

По применению

:

  • Резервные. Используются как резервные источники электроэнергии (при аварийном или временном отключении электричества).
  • Основные. Используются там, где вообще отсутствует электроснабжение.

По числу фаз:

  • Однофазные. Подходят для подключения только однофазных потребителей с нагрузкой 220В.
  • Трехфазные. Этот тип генератора может выдавать как 220В, так и 380В. Он используется для подключения трехфазных потребителей, а также может быть подключен к 1-фазным потребителям, но в этом случае необходимо равномерное распределение нагрузки между фазами (разница мощностей на разных фазах не должна отличаться на 20-25%). Трехфазные дизельные генераторы имеют больший КПД по сравнению с однофазными бензиновыми.

По виду пуска или степени автоматизации:

  • Ручной. Запускается пусковой рукояткой.
  • Электростартерный или автоматический. Запускается поворотом ключа или нажатием на кнопку. Также может иметь дистанционный запуск пультом, соединенным с генератором кабелем.

По виду топлива в двигателе внутреннего сгорания:

  • Бензиновые. Работают на высокооктановых сортах бензина. Расход топлива составляет 1-2,5 л в час. Предел непрерывной работы – 12 часов, в связи с чем не используются в качестве полной замены электроснабжению, но купить электростанцию на бензине для аварийного и резервного источника с небольшими мощностями – оптимальный вариант. Бензиновые генераторы просты в эксплуатации, с низким уровнем шума, однако имеют низкий КПД по сравнению с дизельными аналогами.
  • Дизельные. Работают на дизельном дистиллятном и остаточном топливе. Благодаря обеспечению низкой стоимости вырабатываемой электроэнергии имеют быструю окупаемость. Расход топлива составляет 2-3 л в час. Несмотря на большую стоимость по сравнению с бензиновыми установками, этот тип генераторов экономичнее, имеет больший моторесурс, может работать в суровых условиях с сильной запыленностью и при низких температурах. Купить генератор дизельный – значит обеспечить объект оборудованием, рассчитанным на интенсивное использование.
  • Газовые. Работают на пропан-бутановых смесях и природном газе. Требуют врезку к газовой магистрали или периодическую замену баллона. Отличаются стабильной, надежной и экономичной работой, выдают мощности в диапазоне от 1,5 кВт до десятков тысяч, в результате чего используются на объектах с высоким энергопотреблением. Из-за низкого давления на поршень двигателя, установка работает бесшумно и без вибраций, полное сгорание газа обеспечивает чистоту выхлопа. Особенность: запуск двигателя может быть только при плюсовых температурах, поэтому генератор должен устанавливаться в отапливаемых помещениях.

По производителю

Дизельные: Honda, Kubota, Yamaha (Япония), John Deer (США), Hatz (Германия), Perkins (Великобритая) и др. Продукцию Hondа отличает бесшумность работы и долговечность двигателя. Бензиновые: Mecc Alte, Sincro, Soga (Италия), Stamford (Великобритания) и др. Синхронные генераторы Mecc Alte отличаются высочайшим качеством, безопасностью и надежностью.

Наличие собственного, независимого источника электроэнергии – важное дополнение к техническому оборудованию частного домовладения или предприятия. Электрогенератор решает многие проблемы, связанные с электроснабжением. Правильная эксплуатация и должное сервисное обслуживание позволит использовать электростанции многие годы.

Виды генераторов — особенности и их применение

Генератор — это устройство, которое обеспечивает бесперебойное снабжение электроэнергией дома, либо строительные объекты. И, конечно же, существует огромное количество видов генераторов, в свою очередь каждый из них решает определенные задачи, поэтому перед приобретением необходимо ознакомиться с их характеристиками и особенностями.

Электростанции различаются:

По типу двигателей внутреннего сгорания и потребляемого устройствами типа топлива делятся на следующие виды: дизельные, газовые, бензиновые генераторы.

Бензиновый. Благодаря компактным размерам и простоте использования он является идеальным вариантом в быту при временном отключении электроэнергии, также от него могут питаться автомобильные аккумуляторы, инструменты, лампы аварийного освещения и так далее.

Топливо для такого вида аппарата всегда под рукой. Однако напомним, что такой вид аппарата подходит только как аварийный (резервный) источник на не большие промежутки времени в период отключения постоянной подачи электроэнергии, и они не подходят для бесперебойного обеспечения электроэнергией.

Дизельный. Данный вид является отличным решением для длительной работы и постоянного бесперебойного электроснабжения. Его преимуществами являются мощность, надежность и что очень важно — долговечность. Стоимость дизельного генератора значительно выше, чем бензинового. Однако затраты на топливо и техническое обслуживание у бензинового генератора выше чем у дизельного и это вполне компенсирует разницу в их цене.

Газовый. Этот вид аппарата используется для постоянного бесперебойного электроснабжения, а в некоторых случаях как резервный источник. Главным плюсом этого генератора является его работа на природном газе, что, безусловно, экономичнее (если происходит питание от магистрального газопровода, а также модель может работать на газе из баллонов и значит, его возможно использовать, если по близости таковой магистрали нет). Такой вид электростанции более экологичен (вредные вещества в выхлопах отсутствуют) и прост в обслуживании.

Двигатели генераторов бывают двух видов:

Дизельные (более длительный период работы на отказ, меньший расход топлива, высокая начальная стоимость и используются как постоянный источник электроэнергии).

Бензиновые (легкий запуск даже при низких температурах, значительно дешевле дизельных и используются как кратковременный источник электроэнергии).

Бензиновые двигатели моделей делятся на 2-тактные и 4-тактные.

2-тактные применяются для компактных и маломощных генераторных установок (например, для небольшого дачного участка или поездки на природу). Беспрерывная ежедневная работа должна быть не более 1 часа в сутки. Наработка на отказ не более 500 часов.

4-тактные более мощные и экономичные. Возможна беспрерывная работа примерно 8 часов в сутки. У этого виды генераторов высокий запас прочности, наработка на отказ до 2000 часов.

  • синхронный. Высокое качество электроэнергии (более чистый ток), а так же они легче переносят пиковое перегрузки. Рекомендуется для питания реактивных нагрузок с высокими пусковыми токами;
  • асинхронный. Дешевле чем синхронный, однако, он плохо переносит пиковые перегрузки. Благодаря простоте конструкции является более устойчивым к короткому замыканию. Рекомендуется для питания активных нагрузок;
  • инверторный. Экономичный режим работы, а также вырабатывает электроэнергию высокого качества (что позволяет подключить к нему чувствительную к качеству поступающего тока электронную технику).

Модели бывают однофазными (220 В) и трехфазными (380 В).

Однофазный и трехфазный — разные устройства, у них свои особенности и условиями работы.

Трехфазный стоит выбирать, только если есть трехфазные потребители (в последнее время в загородных домах либо небольших производствах таковые встречаются достаточно редко, так как в основном это какие-либо старые устройства).

Еще трехфазные модели отличаются высокой стоимостью и довольно дорогим обслуживанием, а это значит, что при отсутствии трехфазных потребителей целесообразно приобрести мощный однофазный аппарат.

Купить генератор в нашем интернет-магазине

Если Вы не можете определиться с видом генератора, звоните в отдел продаж по телефону: 8 (800) 302-15-41 — наши специалисты обязательно Вам помогут!

Виды генераторов электрического тока

Другие направления деятельности ООО «Кронвус-Юг»

www.4akb.ru

Оборудование для
обслуживания аккумуляторов

ural-k-s.ru

Промышленное и
автосервисное оборудование

www.metallmeb.ru

Производство мебели
специального назначения

verstaki.com

Слесарные верстаки и
производственная мебель

Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.

Генераторы постоянного и переменного тока

Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.

Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.

Синхронные и асинхронные генераторы

Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.

Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки. Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства). Также, отлично справляются с питанием электродвигателей и электроинструментов.

Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.

Однофазные и трехфазные генераторы

Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные — 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.

Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.

Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.

Компания «ООО «Кронвус-Юг»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.

Какие бывают генераторы: виды и как выбрать?

Нам часто задают вопросы: «какой лучше генератор выбрать?», «чем отличаются различные виды генераторов?», «на какие параметры ориентироваться при выборе?», «когда нужна аренда дизельного генератора, а когда— аренда бензинового генератора?». В данной статье мы отвечаем на все эти вопросы и подробно разбираем отличия разных видов генераторов.

Принцип действия генератора

Генератор представляет собой электрическую машину, которая получает энергию путем превращения энергии химической в механическую, и затем — в электрическую. Рассмотрим подробнее наиболее востребованные на сегодня виды генераторов: бензиновый и дизельный.

Типы генераторов по использованию: портативные и стационарные

Ответ на вопрос о выборе дизельного или бензинового генератора сам по себе не совсем корректен. Когда вы выбираете вид транспорта: скажем, байк или авто, вы же не отталкиваетесь сначала от вида топлива? Вы выбираете транспорт по его назначению. Точно также дело обстоит с генераторами. Необходимо определить его назначение и систему охлаждения, а уже затем вид топлива.

По назначению генераторы бывают:

1. Портативные.

Такие генераторы подходят для бытовых целей: они небольшие, мало весят и оснащены воздушным охлаждением. Мощность их также невелика, такие генераторы подходят только для работ с короткой длительностью. Портативные генераторы могут быть как бензиновыми, так и дизельными.

Мощность различных типов генераторов также отличается:

Для бензиновых это обычно 1 кВт-10 кВт.

Для дизельных — 5 кВт-20 кВт.

По напряжению бывают: однофазные и трехфазные.

    

2. Стационарные.

Используются чаще всего в профессиональных целях, так как рассчитаны на долгосрочные задачи. Такие генераторы габаритны по размерам, имеют большой вес. Если вас интересует аренда генераторов для промышленных целей или масштабных проектов, транспортировку стационарных видов генераторов лучше доверить профессионалам.

Такое оборудование служит длительный срок и является наиболее надежным. Стационарные генераторы отличаются долговечной работой, оптимальными сроками технического обслуживания и экономностью расхода топлива.

Практически все профессиональные генераторы — дизельные. Иногда встречаются газовые варианты.

Мощность может быть какой-угодно: 5 кВт-2000 кВт, выбор будет зависеть от целей использования.

Вид напряжения: чаще всего трехфазное.

Таким образом, если вы выбираете портативные генераторы, они могут быть как бензиновыми, так и дизельными, но их мощность будет небольшая (не более 10-20 кВт). Если же вам нужен более мощный генератор — то стоит выбирать среди стационарных (практически все они дизельные).

Для желающих взять в прокат бензиновый генератор, выбор ограничивается только портативными вариантами.

Дизельные или бензиновые генераторы: что лучше выбрать?

Если для сравнения берем портативный бензиновый и такой же дизельный генератор, то отличия между ними будут следующие:

  • Габариты. Дизельные генераторы отличаются более массивными габаритами, они более тяжелые в сравнении с бензиновыми.
  • Уровень расхода топлива. Дизельные варианты более экономные.
  • Возможности запуска в условиях низких температур. Если вам нужен генератор зимой, отдавайте предпочтение бензиновому — он лучше запускается в холодный сезон.
  • Цена. Аренда бензинового генератора обойдется в 2 раза дешевле, чем дизельного.
  • Надежность. Необходимость в техническом обслуживании у бензинового генератора в 2-3 раза выше. Но об этом вам не нужно беспокоиться, если вы заказываете аренду генератора в Rental Power. Все хлопоты по обслуживанию мы берем на себя.
  • Мощность. То, о чем мы говорили выше. Генераторы малой мощности (до 10 кВт) — бензиновые, если нужна мощность повыше — это будут уже дизельные.

Как видите, выбор того или иного вида генератора зависит от нескольких условий: назначения использования, необходимой мощности и вида напряжения. Исходя из этих параметров уже выбирается вид генератора (портативный или стационарный) и вид топлива (бензиновый или дизельный).

Выбрать подходящий генератор можно в нашем онлайн-каталоге — аренда генераторов по оптимальным ценам от Rental Power доступна в Киеве и по всей Украине.

Как выбрать генератор (электростанцию)? «POWER-GARDEN.RU»

Электродуговая сварка – это наиболее распространенный вид сварки, когда электрод является одновременно источником дуги и газа, появляющегося при расплавлении флюса.

Сварочные электростанции (генераторы) с бензиновым двигателем – наиболее простые в эксплуатации агрегаты. Сварочные бензогенераторы менее требовательны к обслуживанию и нагрузке, обладают малым весом и небольшими габаритами. Они ориентированы, в основном, на бытовое и полупрофессиональное применение.

Дизельные сварочные генераторы, в отличие от бензиновых, более экономичные агрегаты, отличающиеся, к тому же, большим моторесурсом. При этом они требовательны к нагрузке, имеют большие габариты и вес. Цена сварочных дизельгенераторов значительно выше бензиновых аналогов, поэтому они используются в основном в промышленном производстве и строительстве.

Сварочные агрегаты подразделяются на: трансформаторы и выпрямители. Вольтамперная характеристика трансформаторов и выпрямителей является падающей: чем больше сила тока на выходе, тем меньше выходное напряжение.

Сварочные трансформаторы применяются для сварки низколегированных сталей и обеспечивают сварку плавящимися электродами с флюсом на переменном токе.

При сварке выпрямителями также используются плавящиеся электроды с флюсом, но на постоянном токе. Сварочные выпрямители обеспечивают более высокое качество сварного шва благодаря более стабильному горению дуги и применяются для сварки низколегированных и нержавеющих сталей.

Перед покупкой сварочного генератора (электростанции) в первую очередь необходимо сформировать эксплуатационные требования. Следует обращать внимание на технические характеристики как двигателя, так и сварочного модуля, при этом стоит учитывать предполагаемые условия эксплуатации, интенсивность и тип сварочных работ.

Мощность сварочного агрегата подбирается исходя из толщины металла, с которым предполагается работать. Правильный выбор сварочного генератора позволит получить Вам устойчивую дугу и глубокую проварку швов.

Инверторные генераторы (электростанции) – особый вид бензиновых и дизельных электрогенераторов, вырабатывающий наиболее качественный ток. Инверторные генераторы (генераторы инверторного типа, электростанции) обычно используются для бесперебойной работы сложного и/или дорогого электрооборудования (аудио- и видеосистем, электронно-вычислительной техники и др.), потому что использование инверторной технологии позволяет получить идеальный ток для подключения чувствительных потребителей.

Суть инверторной технологии заключается в преобразовании инвертором (модулятором) вырабатываемого переменного тока в постоянный, после чего генератор инверторного типа (инверторная электростанция) максимально стабилизирует волновые колебания и вновь преобразует постоянный ток в выходной переменный, но уже лучшего качества – искажения синусоидальной волны составляют менее 2,5%.

Следует отметить, что высококачественный ток – далеко не единственное преимущество инверторных генераторов (генераторов инверторного типа, инверторных электростанций).

Во-первых, инверторные генераторы (по сравнению с обычными моделями) до 2-х раз меньше по своей массе и габаритам, поэтому многие называют их «портативными».

Во-вторых, генераторы инверторного типа, подстраиваясь под фактическую нагрузку, обладают высокой экономичностью. Дело в том, что инверторные генераторы (в зависимости от нагрузки) имеют автоматическую регулировку оборотов двигателя. Если нагрузка небольшая, то электростанция самостоятельно переключит двигатель на экономичный режим работы. Работа инверторного генератора лежит в нескольких режимах мощности, что позволяет в зависимости от нагрузки обеспечивать необходимое количество кВт в электросети.

В-третьих, генераторы (электростанции) инверторного типа характеризуются низким уровнем шума, что достигается благодаря помещению электростанций в пластиковый шумоизоляционный кожух или доукомплектованию специальными глушителями.

В-четвертых, инверторные генераторы более экологичны по сравнению с дизельными или бензиновыми аналогами. Дело в том, что инверторные электростанции оснащены современной высокоэффективной системой улучшенного сгорания топлива, которая существенно сокращает уровень вредных выбросов в атмосферу.

В-пятых, необходимо отметить высокую надежность генераторов инверторного типа. В их конструкции предусмотрены наиболее передовые способы защиты основных узлов и деталей (система автоматической регулировки оборотов двигателя, защита от перегрузки, датчик низкого давления масла), что позволяет существенно продлить срок их службы.

Инверторные генераторы (электростанции) производятся в мощностном диапазоне от 1 до 7 кВт.

Синхронный и асинхронный генераторы

Альтернатор – электрическая часть генератора (электростанции) – бывает 2-х типов: асинхронный и синхронный альтернатор.

Генераторы (электростанции) с асинхронными альтернаторами стоят дешевле, однако говорить о приемлемом качестве тока в этом случае нельзя. Кроме того, асинхронные генераторы (электростанции) плохо переносят пиковые нагрузки. Дело в том, что в момент запуска электродвигатели потребителей (холодильник, насос, электроинструмент) потребляют кратковременно трех-четырехкратную мощность, поэтому запас по мощности для генераторной установки крайне важен.

Синхронные генераторы (электростанции) отличаются более высоким качеством электроэнергии, а также способны переносить трех-четрырехкратные мгновенные перегрузки. В профессиональных и стационарных электростанциях устанавливаются исключительно синхронные и бесщеточные необслуживаемые альтернаторы признанных лидеров (французский Leroy Somer, итальянский Mecc Alte и Sincro).

Регуляторы напряжения — конденсаторы, трансформаторы, инверторы и AVR (автоматические регуляторы напряжения).

Важной составляющей любой генераторной установки является электрическая часть – альтернатор. Принцип действия альтернатора известен с момента открытия Майклом Фарадеем явления электромагнитной индукции и возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Для потребителя же важен не сам процесс, благодаря которому лампочка на кухне не только горит, но и не мигает. Существует ряд факторов, благодаря которым выходное напряжение может отличаться от заданного значения в большую или меньшую сторону. Такие отклонения вовсе не полезны для потребителей электроэнергии. Именно поэтому альтернаторы снабжают различными устройствами, призванными нивелировать скачки напряжения.

Конденсаторы, трансформаторы, инверторы и AVR (автоматические регуляторы напряжения) регулируют выходное напряжение генераторов, поддерживая его в заданных параметрах, тем самым улучшая качество производимой электроэнергии.

Выбор типа запуска генератора (электростанции)

Бензиновый бытовой генератор (электростанция), малой и средней мощности, который служит незаменимым помощником для работы и отдыха, помимо своей надежности и выполнения прямого предназначения, должен обладать удобством пользования, его приборы должны быть информативны, габариты невелики, а вес мал. При этом запускаться он может как автомобиль – «с ключа».

Как правило, генераторные установки большой мощности в силу объемного двигателя имеют электрический запуск, бытовые же генераторы (электростанции) чаще запускаются при помощи ручного стартера. И дело вовсе не в том, что производители генераторных установок решили позаботиться о физической форме владельцев выпускаемой ими техники, нет, попросту электрический стартер – это электромотор, который прилично весит, для использования которого нужна аккумуляторная батарея, промежуточные механизмы, которые тоже имеют свою массу. Да и цена конечного продукта не становится от такого удобства меньше. И все же, в линейке серьезных производителей бок о бок соседствуют модели одинаковой мощности, как с ручным, так и с электрозапуском. Необходимость такого модельного разнообразия требуется для подключения системы автоматического запуска, и без электростартера здесь не обойтись. Так что выбор за покупателем!

Дополнительное оборудование для генератора (электростанции)

Автоматические системы запуска для генератора, как следует из определения, призваны обеспечить запуск генераторных установок при отключении электроэнергии. Система представляет собой большую электрическую схему, которая при отсутствии напряжения в одном контуре замыкает контакты электростартера генераторной установки. Работа системы должна быть четко сбалансирована с работой электрогенератора.

Система, ее пуск и наладка, порой сравнимы со стоимостью и так недешевой генераторной установки. Наибольшее распространение такой тандем получил на промышленных объектах, где требуется постоянная работа электроприборов, холодильного оборудования, контрольно-измерительного оборудования и т.д. Подобные объекты имеют резервное питаниеБ/ызфтЮ от дизельных или газовых генераторов (электростанций). В случае последних, установки по возможности подключают от магистральной газовой сети, а если это дизельные станции, то используют внешние топливные баки – резервуары, расположенные под землей.

Если установка запитывает объект, находящийся в населенном пункте, или предприятие, с рабочим персоналом, то обязательно используют шумоизоляционный кожух, который существенно снижает шум работающего двигателя. Звук выхлопа снижают за счет использования эффективных глушителей.

Конечно, стационарная установка резервного источника питания должна иметь четкое конкретное обоснование, в силу своей дороговизны. Да не все и строительные площадки возможно оснастить электроустановкой, питающей множество потребителей. Как следствие, в некоторых случаях большую роль играет мобильность генератора. Для бытовых нужд генераторы оснащаются рукоятками и набором транспортных колес, благодаря которым установку, массой более ста килограмм, может транспортировать один человек. В рамках промышленного использования, установки помещают внутрь специального контейнера, который перевозят на грузовом транспорте.

ИБП (Источника Бесперебойного Питания) – источник вторичного электропитания, автоматическое устройство, назначение которого – обеспечить подключенное к нему электрооборудование бесперебойным снабжением электрической энергией в пределах нормы.

Существуют следующие нормы в РФ (определенные в ГОСТ 13109-97), которые характеризуют электропитающие сети: напряжение 220В ± 10 %; частота 50 Гц ± 1 Гц; коэффициент нелинейных искажений формы напряжения менее 8 % (длительно) и менее 12 % (кратковременно).

К сожалению, такими параметрами обладает далеко не каждая электросеть и не только в РФ, поэтому ИБП получили широкое распространение как надежный источник кратковременного электроснабжения. Довольно часто ИБП используются в промежутке, когда центрального электроснабжения уже нет, а резервного еще нет.

При выборе генератора (электростанции), прежде всего, необходимо:

  1. Определить, какой режим эксплуатации генераторной установки предполагается или, другими словами, для каких целей предполагается его использование. На практике электростанция необходима, если:
    • Вы проводите много времени за городом (в коттедже или на даче), где перебои в электроснабжении не редкость;
    • оборудование Вашего коттеджа или дачи, промышленного помещения или офиса требует бесперебойного питания;
    • электроника в Вашем коттедже или на даче может запитываться только качественным током;
    • Вам надо воспользоваться электрооборудованием, при этом источник электроэнергии отсутствует поблизости;
    • Вы любите активный отдых на природе, бываете в экспедициях (пешком или на транспортном средстве), где нужна электроэнергия, чтобы приготовить еду, запитать мини-холодильник, зарядить мобильный телефон, осветить палатку и др.
  2. Рассчитать потребность в мощности генератора (электростанции), предварительно просуммировав количество потребителей и их мощность, не забыв сделать запас в 30-40% для пиковых нагрузок.
  3. Проконсультироваться со специалистами или самостоятельно определить необходимый уровень качества электроэнергии, требующийся для запитки потребителей, т.е. понять потребность в инверторном или не инверторном генераторе, в однофазном или трехфазном генераторе. Это условие, с одной стороны, поможет уберечь от преждевременного выхода из строя высокоточной аппаратуры, а с другой стороны, при отсутствии такой аппаратуры поможет сэкономить при выборе более простой модели генератора.
  4. Определиться с условиями эксплуатации генератора (электростанции). При стационарной установке генератора (электростанции) следует учитывать уровень шума, климатические условия, возможность периодического обслуживания, возможные акты вандализма. Данные условия определят комплектацию и оснастку генераторной установки, наличие всепогодного шумоизоляционного кожуха или его отсутствие.

Руководствуясь вышеперечисленными принципами, можно сделать осмысленную и правильную покупку, рационально потратив средства и время.

Мы очень надеемся, что наши советы помогут определиться с продукцией, подходящей именно под Ваши задачи и полностью удовлетворяющей Ваши потребности, и, как следствие, купить бензиновый (бензогенератор), дизельный (дизельгенератор) или газовый (газогененератор) генератор.

Виды электрических генераторов и принципы их работы

Генераторы переменного тока представляют собой электромашинные агрегаты, выполняющие преобразование механической энергии в электрическую, имеющую переменное поле.

Принцип работы генераторов переменного тока

Принцип действия генераторов переменного тока заключается в использовании в их конструкции специальной системы, посредством которой и получается большой магнитный поток.

В основу конструкции системы включены два сердечника, для изготовления которых используется электротехническая сталь. Пазы одного из элементов предназначены для размещения обмотки, отвечающей за создание магнитного потока, пазы другого отвечают за индукцию ЭДС.

Как правило, внутренний сердечник вращается по горизонтальной или вертикальной орбите и носит название ротора. Статор или второй сердечник остается неподвижным. Уменьшение пространства между этими элементами приводит к увеличению индуктивности магнитного потока.

Основные виды генераторов переменного тока

Существуют асинхронные и синхронные модели. Их основным отличием является конструкция ротора.

В синхронных генераторах переменного тока индуктивные катушки размещены сразу же на самом роторе, в асинхронных на валу предусмотрены пазы, необходимые для размещения обмотки.

Основным эксплуатационным отличием этих типов является то, что синхронные способны выдать на непродолжительное время ток высокой пусковой мощности, которая в несколько раз превышает номинальную.

В этом плане параметры асинхронных моделей несколько скромнее.

Однако при этом производимое ими электричество имеет малые искажения, благодаря чему широко применяются в решении задач по освещению или энергоснабжению бытовой техники.

Очевидно, что потребителей главным образом в плане создания бесперебойного энергоснабжения интересуют устройства, способные соответствовать этому требованию. Для чего и используются именно бытовые генераторы, которые классифицируются по фазности нагрузки, потребляемым энергоресурсам и мощности.

Также основными параметрами генераторов переменного тока являются:

  • мобильность
  • непритязательность
  • надежность
  • простые рекомендации в эксплуатации

Также генераторы переменного тока можно классифицировать по используемым видам топлива. В качестве энергоносителей используются дизельное топливо, природный и биогаз, а также аналогичное сырье, получаемое при переработке химических отходов и хозяйственно-бытовых сточных вод.

Критерии выбора генератора переменного тока

  1. Режим работы. Эти устройства способны работать бесперебойно или как резервный источник очень продолжительное время.
  2. Номинальная мощность. Чтобы установить этот показатель следует сложить активные (коэффициент запаса 1,1) и реактивные (коэффициент запаса 2) мощности всех подключаемых потребителей. Если подключаются мощные нагрузки, то потребуются дополнительные устройства, способные сгладить высокие пусковые токи.
  3. Фазность нагрузки. Для однофазных потребителей требуются соответствующие модели, для трехфазных лучше использовать такие же генерирующие устройства. Однако крайне важно произвести максимально точный расчет нагрузки на каждую фазу, чтобы избежать «перекоса фаз».
  4. Надежность. Во многом зависит от производителя и используемых в сборке компонентов. Важно соблюдать и рекомендации по использованию расходных материалов и топлива.
  5. Финансовые затраты. Генератор переменного тока имеет различную стоимость, что позволяет подобрать модель в соответствии с любыми запросами.

Электрический генератор

Электрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания Ганц, 1909 год.[1] Фотография Прокудина-Горского, 1911 год.
У этого термина существуют и другие значения, см. Генератор.
Основная статья: Электрическая машина
Запрос «Альтернатор» перенаправляется сюда. На эту тему нужно создать отдельную статью
(см. иноязычные аналоги).

Электри́ческий генера́тор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Динамо-машина Йедлика

В 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные.

Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора.

Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле.

Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска.

Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Динамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.
Основная статья: Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х.

Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток.

Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси.

Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами.

Подобная машина была создана англичанином Генри Уальдом в 1863 году.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты.

Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя.

В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря.

Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр.

Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос.

Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики.

Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух принципов:

  • электростатическую индукцию
  • трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока.

Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания.

Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей.

Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД.

МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

  • Электромеханические
    • Индукционные
    • Электрофорная машина
  • Термоэлектрические
    • Термопары
    • Термоэмиссионные преобразователи
  • Фотоэлементы
  • Магнитогидро (газо)динамические генераторы
  • Химические источники тока
    • Гальванические элементы
    • Топливные элементы
  • Биогенераторы

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

E
=

d
Φ

d
t

{displaystyle E=-{frac {dPhi }{dt}}}

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока

Φ

{displaystyle Phi }

пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
    • Турбогенератор — электрический генератор, приводимый в движение паровой турбиной или газотурбинным двигателем;
    • Гидрогенератор — электрический генератор, приводимый в движение гидравлической турбиной;
    • Дизель-генератор — электрический генератор, приводимый в движение дизельным двигателем;
    • Ветрогенератор — электрический генератор, преобразующий в электричество кинетическую энергию ветра;
  • По виду выходного электрического тока:
    • Трёхфазный
    • Однофазный
  • Вид соединения обмоток:
    • С включением обмоток звездой
    • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

  • Тахогенератор
  • Униполярный генератор

Примечания

  1. Studiolum:. Abraham Ganz at the Hindukush (англ.). Архивировано 1 октября 2015 года.

Ссылки

  • Униполярный генератор, Компьютерра
  • Конструкции электрических машин
Для улучшения этой статьи желательно:
  • Проставив сноски, внести более точные указания на источники.

Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.

Виды генераторов электрического тока

Главная » Статьи » Виды генераторов электрического тока

Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.

Генераторы постоянного и переменного тока

Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.

Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.

Синхронные и асинхронные генераторы

Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.

Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки.

Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства).

Также, отлично справляются с питанием электродвигателей и электроинструментов.

Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.

Однофазные и трехфазные генераторы

Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные — 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.

Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.

Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.

Компания «ООО «Кронвус-Юг»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.

Виды генераторов (электростанций): Дизельные, бензиновые, газовые, портативные, передвижные

Использование энергетических ресурсов нуждается в преобразовании одних форм энергии в другие. Устройства, в которых такое преобразование происходит, являются преобразователями энергии.

Данное преобразование, как правило, включает в себя промежуточную стадию: энергия простого носителя предварительно преобразуется в механическую, а после этого полученная механическая энергия преобразуется в электрическую энергию.

Энергетический преобразователь, преобразующий механическую энергию в электрическую энергию или наоборот, называется электрической машиной.

Электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию, называются электрическим генератором.

Любая электрическая машина является электромагнитным устройством, которое включает в себя взаимозависимые магнитные и электрические цепи.

Если встал вопрос, как выбрать электростанцию или генератор, то нужно учитывать множество факторов:

  • мощность,
  • время непрерывной работы,
  • вид топлива,
  • производителя и т.д.

Ниже приведена классификация генераторов по различным параметрам.

По типу первичного двигателя промежуточной стадии электрические генераторы бывают:

  • турбогенераторами, приводимыми в движение газотурбинным двигателем;
  • гидрогенераторами, приводимыми в движение гидравлической турбиной;
  • дизель-генераторами, бензо-генераторами, газогенераторами, приводимыми в движение двигателем внутреннего сгорания;
  • ветрогенераторами, приводимыми в движение энергией ветра.

По виду выходного электрического тока бывают электрические генераторы:

  • Постоянного тока. Их принцип действия основан на законе электромагнитной индукции, открытой Майклом Фарадеем в 1831 году, — электродвижущая сила индуцируется в прямоугольном контуре, который находится в однородном вращающемся магнитном поле. Преобразование в постоянный ток осуществляется посредством электромеханического выпрямителя – коллектора.
  • Переменного тока. В основе их действия также лежит закон электромагнитной индукции. Поток электрических зарядов вызван перемещением электрического проводника. Это движение создает разность напряжений между двумя концами провода, что в свою очередь заставляет двигаться электрические заряды, таким образом, генерируя электрический ток.

По мобильности:

  • Портативные (переносные). Такой тип генератора является одним из наиболее эффективных и удобных решений вопроса резервного электроснабжения загородного дома, обеспечения электричеством в туристическом походе, улучшения условий проживания в длительных путешествиях и экспедициях. Если необходим независимый источник питания, и вы не знаете, как выбрать генератор бензиновый, то первое, что нужно учесть, что его мощность колеблется в пределах от 0,5 до 12 кВт и для крупных объектов не подходит. Хотя малый вес и экономичность делает его популярным резервным источником питания. Эти генераторы оснащены двигателями с воздушным охлаждением.
  • Передвижные. Для такого типа генератора не требуется специальное помещение и монтаж. Оборудование имеет постоянную готовность к срочной эксплуатации. Установка на шасси позволяет доставить оборудование (прицепную электростанцию) в труднодоступную точку, где нет электричества.
  • Стационарные генераторы и электростанции. Применяются для бесперебойной подачи электрической энергии значительных мощностей. Не подлежат транспортировке и имеют постоянное место нахождения. Используются на строительных площадках, различных промышленных объектах непрерывного производства, в торговых центрах и проч. Такие генераторы имеют жидкостное охлаждение с использованием антифриза (радиаторное охлаждение).

В свою очередь стационарные генераторы бывают закрытого и открытого типа (закрытый тип имеет шумопоглощающий всепогодный кожух, открытый тип может быть установлен в помещении, где нет ограничений по уровню шума).

По назначению:

  • Бытовые. Из-за способности эффективного обеспечения электрической энергией не более 8 часов в сутки, бытовые генераторы используются как резервный источник при кратковременных отключениях электроэнергии централизованными линиями электропередач на дачах, в загородных домах, на небольших производствах. Зачастую эти устройства бывают бензиновыми, весят от 25 до 200кг, просты в обслуживании, имеют небольшие габариты.
  • Профессиональные. Предназначены для интенсивного использования на крупных объектах (больницах, супермаркетах, стройплощадках, промышленных предприятиях), а также в жестких условиях эксплуатации. Могут работать в качестве как основных, так и резервных источников электроэнергии. Имеют большой моторесурс.

По применению:

  • Резервные. Используются как резервные источники электроэнергии (при аварийном или временном отключении электричества).
  • Основные. Используются там, где вообще отсутствует электроснабжение.

По числу фаз:

  • Однофазные. Подходят для подключения только однофазных потребителей с нагрузкой 220В.
  • Трехфазные. Этот тип генератора может выдавать как 220В, так и 380В. Он используется для подключения трехфазных потребителей, а также может быть подключен к 1-фазным потребителям, но в этом случае необходимо равномерное распределение нагрузки между фазами (разница мощностей на разных фазах не должна отличаться на 20-25%). Трехфазные дизельные генераторы имеют больший КПД по сравнению с однофазными бензиновыми.

По виду пуска или степени автоматизации:

  • Ручной. Запускается пусковой рукояткой.
  • Электростартерный или автоматический. Запускается поворотом ключа или нажатием на кнопку. Также может иметь дистанционный запуск пультом, соединенным с генератором кабелем.

По виду топлива в двигателе внутреннего сгорания:

  • Бензиновые. Работают на высокооктановых сортах бензина. Расход топлива составляет 1-2,5 л в час. Предел непрерывной работы – 12 часов, в связи с чем не используются в качестве полной замены электроснабжению, но купить электростанцию на бензине для аварийного и резервного источника с небольшими мощностями – оптимальный вариант. Бензиновые генераторы просты в эксплуатации, с низким уровнем шума, однако имеют низкий КПД по сравнению с дизельными аналогами.
  • Дизельные. Работают на дизельном дистиллятном и остаточном топливе. Благодаря обеспечению низкой стоимости вырабатываемой электроэнергии имеют быструю окупаемость. Расход топлива составляет 2-3 л в час. Несмотря на большую стоимость по сравнению с бензиновыми установками, этот тип генераторов экономичнее, имеет больший моторесурс, может работать в суровых условиях с сильной запыленностью и при низких температурах. Купить генератор дизельный – значит обеспечить объект оборудованием, рассчитанным на интенсивное использование.
  • Газовые. Работают на пропан-бутановых смесях и природном газе. Требуют врезку к газовой магистрали или периодическую замену баллона. Отличаются стабильной, надежной и экономичной работой, выдают мощности в диапазоне от 1,5 кВт до десятков тысяч, в результате чего используются на объектах с высоким энергопотреблением. Из-за низкого давления на поршень двигателя, установка работает бесшумно и без вибраций, полное сгорание газа обеспечивает чистоту выхлопа. Особенность: запуск двигателя может быть только при плюсовых температурах, поэтому генератор должен устанавливаться в отапливаемых помещениях.

По производителю

Дизельные: Honda, Kubota, Yamaha (Япония), John Deer (США), Hatz (Германия), Perkins (Великобритая) и др. Продукцию Hondа отличает бесшумность работы и долговечность двигателя. Бензиновые: Mecc Alte, Sincro, Soga (Италия), Stamford (Великобритания) и др. Синхронные генераторы Mecc Alte отличаются высочайшим качеством, безопасностью и надежностью.

Наличие собственного, независимого источника электроэнергии – важное дополнение к техническому оборудованию частного домовладения или предприятия. Электрогенератор решает многие проблемы, связанные с электроснабжением. Правильная эксплуатация и должное сервисное обслуживание позволит использовать электростанции многие годы.

Электрический генератор. Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г.

указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток.

Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси.

Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами.

Подобная машина была создана англичанином Генри Уальдом в 1863г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты.

Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг.

ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря.

Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км.

Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос.

Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую.

Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки.

Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения.

Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения.

Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR.

Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать.

Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе.

Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле.

При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение).

В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах.

Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования.

Такие электростанции исспользуются организациями, использующими различную электронную технику.



Основные виды генераторов и принципы их работы

Генератор — прибор, который вырабатывает электроэнергию за счет преобразования ее из механической энергии ДВС, ротора или турбины. Эти устройства бывают двух видов — генератор переменного тока и постоянного.

Генератор переменного тока использует в работе магнитное поле вращения (электромагнитную индукцию).

То есть, он оснащен ротором, за счет вращательных движений которого в магнитном поле происходит выработка электроэнергии.

Такой генератор имеет некоторое преимущество, и заключается оно в том, что движущий элемент устройства (ротор) совершает вращающиеся движения намного быстрее, чем в генераторе постоянного тока.

Генератор переменного тока может быть синхронным и асинхронным. На сегодняшний день практически везде используются синхронные устройства. Наиболее популярными являются трехфазные, так как они имеют более высокие качественные и эксплуатационные характеристики, нежели однофазные. 

Более мощные генераторы используются, как правило, на электрических станциях, а те, которые не отличаются особой силой, прекрасно служат для автономного электроснабжения, устанавливаются в преобразователях частоты (дизель-генератор), автомобилях или на морском транспорте.

Дизель-генератор — устройство, состоящее из генератора электрического тока и электродвигателя, которые соединяются друг с другом. Оно служит для преобразования одного вида тока в другой (как правило, переменного в постоянный). И, кроме того, используется для преобразования частоты тока и числа фаз.

Дизель-генератор устанавливали, например, на металлургических производствах, для питания электролитических ванн и проч. Но с 60-х годов прошлого века эти устройства практически везде заменены на более совершенные и экономичные статические полупроводниковые преобразователи.

Устройство, преобразовывающее механическую энергию в постоянный ток за счет, опять же, вращения двигателя или ротора — это генератор постоянного тока. Но он сложнее, его вес и стоимость намного больше, чем генератора переменного тока.

Применяется генератор постоянного тока, в основном, в тех отраслях, в которых предпочтительным или необходимым является именно переменный ток. Например, это — предприятия металлургии и электролизной промышленности.

Часто генератор постоянного тока используется на электростанциях в качестве возбудителя цепи синхронных генераторов или основного источника энергии, а также находит применение на транспорте и морских судах.

Генератор. Его специфика и принцип работы

Генератор – это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в исходную электрическую энергию.

Необходимо знать, что генератор вовсе не “производит” электрическую энергию. На самом деле прибор применяет механическую энергию, которая подается к нему, чтобы направить электрические заряды, движущиеся в проводе, через внешнюю электрическую цепь.

Эта совокупность электрических зарядов составляет выходной электрический ток, подаваемый генератором.

Рабочий механизм такого устройства понятен, если учитывать то, что генератор является аналогом водяного насоса, что способствует потоку воды, однако не «производит» воду, которая движется сквозь него.

Нововведенные генераторы выполняют свою работу исходя из принципа электромагнитной индукции, впервые исследованной Майклом Фарадеем.

Изобретатель сделал открытие, согласно которому заряженный электрический поток может быть спровоцирован переносом непосредственного руководителя электроэнергии, такого как проволока с электрическим зарядом, к центру магнитного поля.

Это перемещение генерирует различное напряжение между двумя концами проволоки или электропроводника, что провоцирует электрические заряды, которые в дальнейшем будут производить электрический ток.

Основные составляющие генератора:

  1. Двигатель
  2. Генератор переменного тока
  3. Топливная система
  4. Регулятор напряжения
  5. Системы охлаждения и выхлопа
  6. Смазочная система
  7. Зарядное устройство
  8. Панель управления
  9. Каркас

1. Двигатель является основой механической энергии, поставляемой к генератору. Размер двигателя прямо пропорционален максимальному объёму выходной энергии, которую способен обеспечить генератор.

К тому же, топливо, используемое в двигателях, зависит от габаритов самого устройства.

Двигатели малой емкости функционируют на дизельном топливе, а большие двигатели – на природном газе, бензине, а также на пропане в сжиженной или газообразной форме.

Кроме того, внутри цилиндра двигателя есть специальный чехловой рукав в качестве своеобразной обшивки, что, в свою очередь, предотвращает износ внутренней конструкции.

Ученые создали еще один вид двигателя с расположением клапанов сверху. Такая конструкция не похожа на другие виды двигателей, поскольку впускные и выпускные клапаны расположены в передней части цилиндра.

Такие двигатели удобны в использовании благодаря компактному дизайну, легкому принципу работы, массивности каркаса, низких уровнях шума и загрязнения окружающей среды в процессе работы.

Однако, стоимость двигателей такого качества значительно выше других.

2. Генератор переменного тока – это один из элементов генератора, который преобразует механическую входную энергию двигателя в электрическую выходную.

В нем содержатся стойкие и движущиеся детали, что в дальнейшей работе вызывает движение между магнитным и электрическим полями, которые создают электрическую энергию, а его металлический корпус обеспечивает долговечность устройства.

Примером неподвижной детали есть статор. В нем содержится скопление проводников электроэнергии, намотанных на катушки. Ротор – движущийся компонент, который вращается внутри магнитного поля благодаря индукции магнитов источника постоянного тока.

3. Топливная система. Стандартный топливный бак с достаточной емкостью и мощностью может обеспечить работу генератора на протяжении 6-8 часов. Трубы топливного бака и двигателя соединены между собой.

По ним топливо поступает из бака к двигателю (линия подачи), а затем из двигателя в резервуар (линия отдачи). Вентиляционная труба предотвращает накопление давления или вакуума установки.

Переливная труба в качестве посредника между топливным баком и дренажной трубой не позволяет переполнять бак при заправке и предупреждает попадание жидкости на генератор. Электрический топливный насос поставляет топливо из резервуара к дневному баку.

Фильтр очищает топливо от воды и примесей во избежание коррозии и загрязнения. Распылитель топлива распределяет необходимый объём топлива в камеру сгорания двигателя.

4. Регулятор напряжения настраивает выходное напряжение генератора и превращает его переменный ток в постоянный.

Затем регулятор напряжения направляет этот постоянный ток на подборку вторичных обмоток в статоре, которые в свою очередь провоцируют поток переменного тока.

В данных обмотках содержатся выпрямители тока, которые отвечают за конвертирование тока в постоянный. Этот поток постоянного тока подается к ротору (установке) для создания переменного тока соответственно.

Этот цикл длится до момента производства генератором выходного напряжения, равного его полной рабочей способности. В условиях большей емкости генератора, регулятор напряжения генерирует меньший поток переменного тока. Когда генератор работает на полную мощность, этот регулятор вызывает достаточный поток постоянного тока для поддержания генератора при полном ходе работы.

5. Система охлаждения. При непрерывном процессе работы генератора (обязательно в хорошо проветриваемом помещении), его составляющие в определенной степени нагреваются.

Для этого и необходима система охлаждения и вентиляции, чтобы удалить тепло, которое накопилось во время рабочего цикла.

Для охлаждения обычно применяют пресную воду или водород, которые изымают тепло из генератора и транспортируют его по теплообменнику ко вторичной обмотке, в ней содержится химическая формула Н2О с минералами в качестве охладителя.

Система выхлопа. Выхлопные газы, выделяемые генератором, подобные тем, что возникают в дизельных или газовых двигателях и содержат ядовитые токсичные вещества.

Поэтому, необходимо обеспечить дизельный генератор выхлопной системой высокого качества для утилизации опасных газов во избежание смерти на предприятиях в результате удушения чадным газом.

Составляющие элементы стандартных выхлопных труб – это чугун, кованое железо или сталь для большей безопасности.

6. Смазочная система. Так как внутри генератора имеются движущиеся детали, для этого них необходима регулярная смазка специальными маслами для долговечности и плавного скольжения по внутренней конструкции генератора.

7. Зарядное устройство. Запуск генератора осуществляется при помощи батареек, а его зарядка – при помощи автоматического аккумулятора. Если напряжение при зарядке выше нормы, это сокращает продолжительность работы аккумулятора. Нержавеющая сталь, из которой изготавливаются такие зарядные устройства, останавливает процесс коррозии.

8.

На панели управления отображаются различные приложения, датчики параметров двигателя, которые включают в себя давление масла, температуру теплоносителя, напряжение аккумулятора, скорость вращения двигателя и срок службы, датчики генератора, а именно счетчики для измерения выходного тока и напряжения, рабочей частоты, а также автоматический включение и отключение. Другие элементы управления представляют собой переключатель фазового селектора, частотный выключатель и переключатель управления двигателем на ручной или автоматический режим.

9. Каркас. Дизельные генераторы покрыты заземленным прочным корпусом для обеспечения крепления всех частей.

Преимущества дизельных генераторов

Дизельные генераторы устанавливают непрерывный равномерный поток напряжения на других устройствах, позволяют регулировать колебания.

Они изготавливаются для стабильного использования и имеют меньшее количество подвижных частей в отличие от других типов генераторов. А значит, для них не обязательное постоянное техническое обслуживание и ремонт.

Дизельные генераторы экономнее бензиновых. Это обеспечивает более длинную продолжительность рабочего цикла при одинаковой мощности.

Дизельное топливо дешевле, чем бензин, потому дизельные генераторы дешевле в использовании. Частично это связано с тем, что дизельные двигатели не содержат в себе свечи зажигания или карбюраторы. Главным постоянным требованием к обслуживанию дизельного двигателя является регулярная смена масла.

Также одним из преимуществ таких видов генератора является его долговечность. В отличие от бензинового генератора, дизельный работает на 3 года дольше. Кроме того, дизельное топливо менее легковоспламеняющееся по сравнению с бензином.

Во избежание потенциальных убытков

Одной из самых распространенных причин повреждения дизельных генераторов является их недостаточная загруженность. То есть, дизельные генераторы работают более продуктивно именно при полной мощности. Во время выполнения задач на низкой мощности они способны выделять углекислый газ.

В результате сажа и остатки от неиспользованного топлива могут скапливаться, что негативно влияет на поршневые кольца генератора. Во избежание этого, необходимо использовать генератор примерно на 70% от максимальной нагрузки.

Хотя эти генераторы составляют высокую стоимость, однако они являются надежным источником электроэнергии, что значительно улучшит работу на предприятии.

Использование дизельных генераторов в промышленности:

  1. для энергообеспечения населенных пунктов, заводов, аэродромов и аэропортов;
  2. для обеспечения электроснабжением водного, железнодорожного видов транспорта и с/х техники;
  3. в качестве вспомогательного источника энергии для карьерных самосвалов.

Как генератор вырабатывает электричество? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях. В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию. Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь.Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг. Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле.Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрогенератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основной узел / рама
Описание основных компонентов генератора приведено ниже.
Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном состоянии) или природный газ. Меньшие двигатели обычно работают на бензине, а большие двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели с верхним расположением клапанов отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой механизм управления
• Прочность
• Удобство в эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генераторная головка», представляет собой часть генератора, вырабатывающую электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле одним из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае малых блоков генератора, топливный бак является частью занос базы генератора или смонтирован на верхней части корпуса генератора. Для коммерческого использования может потребоваться монтаж и установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.


Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — теперь обмотки возбудителя работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент нельзя переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно прикрепляются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получать разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.


Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.


Зарядное устройство
Генератор st e работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.


Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основной узел / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

электрических генераторов | Как работают генераторы

Какие части электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего нужна.Части генератора:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые работают вместе, создавая электромагнитное поле и движение электронов, которые генерируют электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии.Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения предотвращает перегрев машины. Выхлопная система направляет и удаляет дымовую форму во время работы.
  1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа.Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для батареи — это полностью автоматический компонент, который обеспечивает готовность батареи к работе в случае необходимости, подавая на нее постоянное низкое напряжение.
  1. Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов.Современные устройства даже способны определять падение или отключение электроэнергии и могут автоматически запускать или выключать генератор.
  1. Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрогенераторов?

Современные электрические генераторы доступны во многих вариантах заправки. Дизель-генераторы — самые популярные промышленные генераторы на рынке.К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива и работают как на бензине, так и на дизельном топливе.

Топливные баки генератора

Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания. Без топлива не может происходить горение, и генератор не может преобразовывать механическую энергию в электрическую.Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу, когда это необходимо.

В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Топливо для генератора хранится в баках различной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности.Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Надземные и подземные резервуары для хранения топлива генератора — лучший выбор для нужд большой емкости. Подземные резервуары для хранения дороже в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения.Топливные баки генераторов и топливные системы генераторов должны соответствовать нескольким требованиям и допускам, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, — это Кодексы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор.Для кратковременных или редких отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет наполнять резервуар чаще, чем вам нужно будет заполнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым перебоям в подаче электроэнергии.

Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится.Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы получить лучшее представление о стоимости и логистике, связанных с получением топлива для генератора.

Выхлопные системы и средства контроля выбросов генератора

Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генератора уменьшают и отводят тепло различными способами:

  • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
  • Водород. Водород — очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, которые часто расположены в больших местных градирнях.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

Пары, выделяемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо отфильтровать и удалить из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам от генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) — для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
  • New Source Performance Standards (NSPS) — Стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

Хорошая новость заключается в том, что многие новые генераторные установки уже соответствуют стандартам выбросов от генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — поговорить с продавцом или производителем генератора.

Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

Панель управления генератора и автоматический переключатель резерва (АВР)

Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.

Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

В дополнение к круглосуточному мониторингу панель управления генератором предоставляет обширную информацию для менеджеров сайта:

  • Манометры двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
  • Генераторные датчики предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какое обслуживание требует генератор?

Генераторы

представляют собой двигатели и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и проверки своих генераторов, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.

Самая лучшая программа обслуживания генератора — та, которую рекомендует производитель, но, как минимум, все планы обслуживания генератора должны включать регулярное и текущее:

  • Осмотр и снятие изношенных деталей.
  • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
  • Осмотр и чистка аккумуляторной батареи.
  • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Осмотр системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнить с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

Генераторы

могут прослужить десятилетия при правильном обслуживании. Эти простые небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора не является делом, которым вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в прорези, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 герц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в прорези, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 герц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в прорези, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° из положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Роторная конструкция генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 герц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Генератор

(двигатель) — оборудование энергетической зоны

1.0 Назначение

Power Zone Equipment, Inc. Политика конфиденциальности данных

Политика, изложенная ниже, описывает личные данные, которые может собирать Power Zone Equipment, то, как Power Zone Equipment использует и защищает эти данные, и кому мы можем их передавать. Эта политика предназначена для уведомления физических лиц о личных данных в целях соблюдения законов и нормативных актов о конфиденциальности данных юрисдикций, в которых работает Power Zone Equipment.

Power Zone Equipment призывает наших сотрудников, независимых подрядчиков, клиентов, поставщиков, коммерческих посетителей, деловых партнеров и другие заинтересованные стороны ознакомиться с этой политикой. Используя наш веб-сайт или отправляя личные данные в Power Zone Equipment любыми другими способами, вы подтверждаете, что понимаете и соглашаетесь соблюдать эту политику, а также соглашаетесь с тем, что Power Zone Equipment может собирать, обрабатывать, передавать, использовать и раскрывать ваши личные данные как описано в этой политике.

2.0 Персональные данные

Power Zone Equipment обязуется соблюдать все разумные меры предосторожности для обеспечения конфиденциальности и безопасности личных данных, собранных Power Zone Equipment. Во время использования вами нашего веб-сайта или посредством других коммуникаций с Power Zone Equipment, персональные данные могут собираться и обрабатываться Power Zone Equipment. Как правило, Power Zone Equipment собирает личную контактную информацию (например, имя, компания, адрес, номер телефона и адрес электронной почты), которую вы сознательно предоставляете при регистрации, запрашивая расценки, отвечая на вопросы или иным образом для использования в наших коммерческих отношениях.Иногда мы можем собирать дополнительные персональные данные, которые вы добровольно предоставляете, включая, помимо прочего, название должности, дополнительную контактную информацию, дату рождения, хобби, области интересов и профессиональную принадлежность.

3.0 Использование личных данных

Веб-сайт

Power Zone Equipment предназначен для использования клиентами Power Zone Equipment, коммерческими посетителями, деловыми партнерами и другими заинтересованными сторонами в деловых целях. Персональные данные, собранные Power Zone Equipment через свой веб-сайт или другими способами, используются для поддержки наших коммерческих отношений с вами, включая, помимо прочего, обработку заказов клиентов, заказов от поставщиков, управление учетными записями, изучение потребностей клиентов. , отвечая на запросы и предоставляя доступ к информации.Кроме того, в соответствии с законами и постановлениями соответствующей юрисдикции для поддержки наших отношений с вами:

  • мы можем передавать личные данные нашим аффилированным лицам, чтобы лучше понимать потребности вашего бизнеса и способы улучшения наших продуктов и услуг;
  • мы можем использовать сторонних поставщиков услуг, чтобы помочь нам в сборе, сборке или обработке личных данных в связи с услугами, связанными с нашими деловыми отношениями;
  • мы (или третье лицо от нашего имени) можем использовать личные данные, чтобы связаться с вами по поводу предложения оборудования Power Zone для поддержки вашего бизнеса или для проведения онлайн-опросов, чтобы лучше понять потребности наших клиентов; и
  • мы можем использовать личные данные для маркетинговой и рекламной деятельности.

Если вы решите не использовать свои личные данные для поддержки наших отношений с клиентами (особенно для прямого маркетинга или исследования рынка), мы будем уважать ваш выбор. Мы не продаем ваши личные данные третьим лицам и не передаем их третьим лицам, за исключением случаев, указанных в настоящей политике. Power Zone Equipment будет хранить ваши персональные данные до тех пор, пока вы поддерживаете отношения с клиентами с Power Zone Equipment и / или если вы зарегистрировались для получения маркетинговых или иных сообщений от Power Zone Equipment, до тех пор, пока вы не потребуете, чтобы мы удалили такие персональные данные. .

4.0 Сторонние поставщики услуг

Power Zone Equipment является коммерческим оператором своего веб-сайта и использует поставщиков услуг для оказания помощи в размещении или иным образом выступая в качестве обработчиков данных, для предоставления программного обеспечения и контента для наших сайтов и для предоставления других услуг. Power Zone Equipment может раскрывать предоставленные вами личные данные этим третьим сторонам, которые предоставляют такие услуги по контракту для защиты ваших личных данных. Кроме того, в соответствии с законами и нормативными актами соответствующей юрисдикции Power Zone Equipment может раскрывать личные данные, если такое раскрытие:

  • — использование персональных данных для дополнительной цели, которая напрямую связана с первоначальной целью, для которой персональные данные были собраны;
  • необходим для подготовки, согласования и исполнения договора с вами;
  • требуется законом, компетентными государственными или судебными органами;
  • необходим для обоснования или сохранения судебного иска или защиты;
  • является частью корпоративной реструктуризации, продажи активов, слияния или продажи; или,
  • Код
  • необходим для предотвращения мошенничества или других незаконных действий, таких как умышленные атаки на системы информационных технологий Power Zone Equipment.

5.0 Международная передача данных

Обратите внимание, что для наших клиентов в Швейцарии и Европейском союзе (ЕС) компания Power Zone Equipment находится в США. Если вы используете наши веб-сайты или веб-порталы, или вся информация, включая личную информацию, может быть передана в Power Zone Equipment (включая субподрядчиков, которые могут поддерживать и / или управлять нашим веб-сайтом) в США и других странах и может быть передана третьим лицам. вечеринки, которые могут быть расположены в любой точке мира.Хотя сюда могут входить получатели информации, находящиеся в странах, где уровень правовой защиты вашей личной информации может быть ниже, чем в стране вашего местонахождения, мы будем защищать вашу информацию в соответствии с требованиями, применимыми к вашей информации и / или местоположению. В частности, для передачи данных за пределы ЕС, Power Zone Equipment будет использовать соглашения о передаче данных, содержащие Стандартные договорные положения. Используя наши веб-сайты или веб-порталы, вы недвусмысленно соглашаетесь на передачу вашей личной информации и другой информации в США и другие страны для целей и использования, описанных в настоящем документе.

6.0 Автоматический сбор неличных данных

Когда вы заходите на веб-сайты или веб-порталы Power Zone Equipment, мы можем автоматически (т. Е. Не путем регистрации) собирать неличные данные (например, тип используемого интернет-браузера и операционной системы, доменное имя веб-сайта, с которого вы пришли, количество посещения, среднее время нахождения на сайте, просмотренные страницы). Мы можем использовать эти данные и делиться ими с нашими филиалами по всему миру и поставщиками соответствующих услуг для мониторинга привлекательности наших веб-сайтов и улучшения их производительности или содержания.В этом случае обработка выполняется анонимно и по усмотрению Power Zone Equipment.

7.0 Другие онлайн-данные

Кроме того, для некоторых технических онлайн-приложений или других взаимодействий с оборудованием Power Zone может потребоваться ввод коммерческих и технических данных. Предоставляя запрошенную информацию, вы даете согласие на обработку и хранение такой информации компанией Power Zone Equipment. Если в Power Zone Equipment не указано, что вы хотите удалить эту информацию с сервера Power Zone Equipment, такая информация может быть сохранена Power Zone Equipment и использована для будущих коммерческих коммуникаций.Запрос на удаление этой информации может быть сделан по контактной информации, указанной ниже. Power Zone Equipment будет принимать все разумные меры предосторожности, чтобы гарантировать, что никакая такая информация не будет предоставлена ​​или разглашена другим третьим лицам, за исключением, если применимо, тех третьих сторон, которые выполняют хостинг, обслуживание и связанные с этим услуги сайта.

8.0 «Файлы cookie» — информация, автоматически сохраняемая на вашем компьютере

Файлы cookie — это информация, которая автоматически сохраняется на компьютере пользователя веб-сайта.Когда пользователь просматривает веб-сайт (-ы) Power Zone Equipment, Power Zone Equipment может сохранять некоторые данные на компьютере пользователя в форме «файлов cookie», чтобы автоматически распознавать пользователя при будущих посещениях веб-сайта (-ов) Power Zone Equipment. Power Zone Equipment приложит разумные усилия для обеспечения соблюдения законов и постановлений соответствующих юрисдикций в отношении файлов cookie.

9,0 Дети

Power Zone Equipment не будет сознательно собирать персональные данные от детей младше 18 лет.Веб-сайт (-ы) Power Zone Equipment не предназначен для лиц младше 18 лет

10.0 Безопасность и целостность данных

Power Zone Equipment будет принимать разумные меры предосторожности для защиты личных данных, находящихся в его распоряжении, от риска потери, неправильного использования, несанкционированного доступа, раскрытия, изменения и уничтожения. Power Zone Equipment периодически пересматривает свои меры безопасности, чтобы обеспечить конфиденциальность личных данных.

Power Zone Equipment будет использовать личные данные только способами, совместимыми с целями, для которых они были собраны или впоследствии разрешены вами.Хотя Power Zone Equipment будет принимать разумные меры для обеспечения того, чтобы личные данные соответствовали его предполагаемому использованию, были точными, полными и актуальными, Power Zone Equipment также полагается на каждого человека, чтобы помочь в предоставлении точных обновлений его или ее личных данных.

11.0 Ссылки на другие веб-сайты

Веб-сайты

Power Zone Equipment могут содержать «ссылки» на веб-сайты, принадлежащие третьим сторонам и управляемые ими. Получив доступ к этим ссылкам, которые предоставлены для вашего удобства, вы покинете наш сайт и будете подчиняться политике конфиденциальности другого веб-сайта.Эта политика не распространяется на любую личную информацию, которую вы предоставляете посторонним третьим лицам.

12.0 Сохранение данных

В целом, Power Zone Equipment будет хранить персональные данные только столько времени, сколько необходимо для конкретной цели обработки и в соответствии с политикой управления записями Power Zone Equipment, или в соответствии с другими требованиями законов и нормативных актов конкретной юрисдикции. Например, данные будут храниться в течение периода времени, в течение которого вы имеете право использовать веб-сайты с оборудованием Power Zone, включая любые инструменты для оборудования Power Zone, доступные через наши веб-сайты.После прекращения действия такой авторизации ваши личные данные, связанные с использованием веб-сайтов Power Zone Equipment, будут удалены.

13.0 Доступ к данным и исправление

По запросу Power Zone Equipment предоставит физическим лицам разумный доступ к личным данным, которые она хранит о них. Кроме того, Power Zone Equipment будет принимать разумные меры, чтобы позволить отдельным лицам исправлять, изменять или удалять информацию, которая, как доказано, является неточной или неполной. Power Zone Equipment также полагается на каждого человека, чтобы помочь в предоставлении точных обновлений его или ее личных данных.Чтобы получить доступ, исправить, изменить или удалить личные данные Power Zone Equipment о человеке, физическое лицо должно связаться со следующим:

ТЕЛЕФОН: + 1-719-754-1981 | ЭЛЕКТРОННАЯ ПОЧТА: [email protected]

14.0 Права ЕС на конфиденциальность данных

Если ваши персональные данные обрабатываются в ЕС или вы являетесь резидентом ЕС, Общий регламент ЕС о защите данных предоставляет вам определенные права в соответствии с законом. В частности, право на доступ, исправление или удаление ваших личных данных Power Zone Equipment.

В той степени, в которой это требуется действующим законодательством, Power Zone Equipment будет предоставлять физическим лицам разумный доступ к личным данным, которые Power Zone Equipment хранит о них, и будет принимать разумные меры, чтобы позволить таким лицам исправлять, изменять или удалять информацию, которую Power Zone имеет в отношении их. Power Zone Equipment также полагается на каждого человека, чтобы помочь в предоставлении точных обновлений его или ее личных данных. Чтобы получить доступ, исправить, изменить или удалить личные данные, которые Power Zone Equipment хранит о физическом лице, физическое лицо должно связаться с его или ее коммерческим представителем Power Zone Equipment или связаться с нами по следующему адресу электронной почты: sales @ powerzone.com.

Если у вас есть комментарий, вопрос или жалоба относительно того, как Power Zone Equipment обрабатывает ваши личные данные, мы приглашаем вас связаться с нами, чтобы мы могли решить этот вопрос. Кроме того, лица, находящиеся в ЕС, могут подать жалобу на обработку своих личных данных в органы по защите данных ЕС (DPA). Следующая ссылка может помочь вам найти подходящий DPA: http://ec.europa.eu/justice/data-protection/bodies/authorities/index_en.htm.

15.0 Изменения в этой политике

Power Zone Equipment оставляет за собой право время от времени изменять эту политику, чтобы она точно отражала правовую и нормативную среду и наши принципы сбора данных. Когда в эту политику будут внесены существенные изменения, Power Zone Equipment разместит пересмотренную политику на нашем веб-сайте.

16.0 Вопросы и комментарии

Если у вас есть какие-либо вопросы или комментарии по поводу этой политики (например, для просмотра и обновления или удаления ваших личных данных из нашей базы данных), пожалуйста, свяжитесь с + 1-719-754-1981 или sales @ powerzone.com

Каковы функции генераторов?

Беспрерывная подача электроэнергии из электросети в дом или бизнес практически невозможна. Может произойти стихийное бедствие, повреждение линий электроснабжения и множество других технических проблем, которые могут вызвать отключение электроэнергии. Здесь в игру вступает генератор. Функции генераторов — обеспечивать электроэнергией при отсутствии постоянного источника питания и предотвращать прерывание повседневной деятельности.

Что такое электрический генератор?

Это устройство, которое получает механическую энергию от внешнего источника и преобразует ее в электрическую.

Важно знать, что генератор не производит электроэнергию. Он просто заставляет двигаться существующие электрические заряды в проводе своих обмоток, используя внешнюю механическую энергию. Заряды проходят через внешнюю электрическую цепь, прежде чем преобразуются в электричество. Вы можете сравнить механизм с водяным насосом, который не «создает» воду, а только пропускает ее.

Ранее генераторы работали по принципу электромагнитной индукции Майкла Фарадея. Он обнаружил, что движение электрического проводника в магнитном поле может генерировать поток электрических зарядов. Он создает разность напряжений между двумя противоположными концами проводника, вызывая циркуляцию зарядов и производство электрического тока.

Некоторыми источниками механической энергии являются турбины, работающие на газе, воде и паре. Двумя другими источниками являются двигатели внутреннего сгорания и ручные кривошипы.

Типы генераторов

Они делятся на две широкие категории:

  • Динамо, вырабатывающее постоянный ток (постоянный ток)
  • Генераторы переменного тока, вырабатывающие переменный ток

Первый тип — результат промышленной революции. В тот период в его изобретение и продвижение в целях полезного промышленного применения внесли свой вклад ряд людей. Динамо-машины выполняют преобразование с помощью вращающихся проволочных катушек и магнитных полей.Они преобразуют механическую энергию в постоянный ток. В наши дни они используются только в нескольких приложениях с низким энергопотреблением.

Сегодня генераторы являются более популярным вариантом для выработки электроэнергии. Их механизм включает вращение вращающегося магнита внутри набора проводящих катушек. Он вращает магнитное поле, создаваемое либо электромагнитом катушки возбуждения, либо постоянными магнитами, которое генерирует переменное напряжение. Генераторы преобразуют механическую энергию в переменный ток.

Различные функции генераторов

Эти устройства доступны в нескольких типах.В зависимости от их размера и механизма их основное использование — обеспечение электроэнергией жилых и коммерческих объектов. Некоторые из общих функций генераторов заключаются в обеспечении:

Резервное питание при отключении электроэнергии

Отключение электроэнергии и сброс нагрузки очень распространены в сельской местности в часы пик и в суровые погодные условия. Генератор, являясь источником независимой электроэнергии, может поддерживать работу электрических систем в случае необходимости. Это поможет вам встать и продолжить работу без каких-либо проблем.

Резервное питание для бизнеса

Резервный генератор не работает при нормальном электроснабжении. Он всегда готов к подаче электроэнергии в случае возникновения чрезвычайной ситуации. Подумайте о бизнесе или больнице, где одна секунда отключения электроэнергии может иметь катастрофические последствия. Это устройство будет поддерживать все в рабочем состоянии и предотвращать потерю данных в случае непредвиденных сбоев питания.

Большинство систем резервного питания включает в себя резервный генератор, аккумуляторы и другое оборудование.

Временный источник питания

В некоторых местах невозможно использовать выделенные силовые подключения.Подумайте о строительных площадках, на которых нет электричества. Или организовать мероприятие в удаленном районе, где нет электросети. Электрогенераторы — единственный надежный источник энергии в таких ситуациях. Устройства могут питать любое электрическое оборудование, включая инструменты, большие осветительные установки и звуковые системы.

Маленькие генераторы идеально подходят для кемпинга и путешествий. Они могут работать с малой и средней техникой.

Постоянная мощность

Некоторым предприятиям приходится полагаться на генераторы для постоянного электроснабжения из-за отсутствия электросетей в этом районе.Например, сельхозпредприятиям часто требуется постоянный поток электроэнергии для выполнения различных задач — от возделывания до сбора урожая и сохранения урожая.

Поддержка основного источника питания

Функции генераторов также включают производство электроэнергии в течение определенного периода времени для поддержки энергосистемы. Например, спрос на электроэнергию наиболее высок в часы пик. Иногда это может вызывать проблемы со стабильностью, и генераторы STOR (краткосрочного операционного резерва) помогают сетям удовлетворять спрос на мощность, превышающую прогнозируемый уровень.Они синхронизируются с основной системой для подачи аварийного электричества при необходимости. Их функция отличается от крупномасштабной возобновляемой генерации, которая поставляет нестабильную мощность в сети.

Разница между электрическим генератором и электродвигателем

Многие путают эти два устройства за одно, но их функции полностью противоположны. Генератор превращает механическую силу в электричество, но двигатель использует электрическую энергию для создания механической энергии.Электричество вращает роторы внутри него, чтобы вращать вал. Следствием этих действий является механическая сила.

В современных двигателях используются постоянные магниты, которые можно найти в виде катушек между роторами. Как и генераторы, они работают от постоянного или переменного тока. Они доступны в различных размерах для использования в различных сферах — от небольших часов до гигантского промышленного оборудования.

Как выбрать генератор?

Поскольку вы уже знаете функции генераторов, вы, возможно, догадались, что их мощность измеряется в ваттах.Чем больше число, тем больше устройств они могут включить одновременно. Модель на 5000 ватт подходит для обычного домашнего хозяйства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *